Critical Path Analysis - Q5 (21/5/24)
Create an activity-on-arc network corresponding to the following precedence table, with earliest and latest event times, given that the only critical activities are C, D, F and I.

Activity	Immediate predecessors	Duration (hours)
A	-	6
B	-	4
C	-	8
D	C	3
E	A, B, D	6
F	B, D	10
G	C	
H	C	
I	E, F, G	10
J	F, G	7
K	F, G, H	9

Solution

Denoting the duration of activity A by a etc:
$E_{3}=0+8=8 ; E_{2}=\max \left(E_{3}+3,0+b\right)=\max (11,4)=11$
$E_{1}=\max \left(E_{2}+0,0+a\right)=\max (11,6)=11$
As C is critical, $L_{3}=E_{3}=8$
As D is critical, $L_{2}=E_{2}=11$
As F is critical, $E_{5}=E_{2}+f=11+10=21$, and $L_{5}=E_{5}=21$
$E_{4}=\max \left(E_{1}+e, E_{5}+0\right)=\max (11+6,21)=21$
As I is critical, $L_{4}=E_{4}=21, E_{7}=E_{4}+i=21+10=31$
and $L_{7}=E_{7}=31$
$L_{6}=L_{7}-k=31-9=22$
As K is not critical, and $L_{6}+k=L_{7}$, it follows that $E_{6}<L_{6}$;
ie $E_{6}<22$
$E_{6}=\max \left(E_{3}+h, E_{5}+0\right)=\max (8+h, 21)$
So $E_{6} \geq 21$, and hence (as $E_{6}<22$) $E_{6}=21$

