Further Integration Methods (STEP) (8 pages; 20/6/24)

See also: "Integration Methods".

Contents

- (A) Substitutions
- (B) Rearrangements
- (C) Miscellaneous

(A) Substitutions

(1) The standard substitution method is to write an integral in the form $\int f(x)h(g(x)) dx$, where $\int f(x)dx = g(x)$, and then the substitution u = g(x) will work, provided that h(u) can be integrated.

In some cases it may be easier to spot a derivative, rather than an integral.

Consider $I = \int secx(secx + tanx)^n dx$ for example.

 $\int secx \ dx = \ln |secx + tanx|$, which isn't of any use (ie the rest of the integrand $[(secx + tanx)^n]$ isn't a function of

 $\ln |secx + tanx|$ that can be integrated easily).

But if a substitution is to work, it will be u = secx + tanx,

and
$$\frac{d}{dx}(secx + tanx) = secxtanx + sec^2x$$

Fortunately *I* can be rearranged to give

$$\int (secx + tanx)^{n-1} (sec^2x + secxtanx) dx,$$

and making the substitution u = secx + tanx then gives

$$I = \frac{1}{n}(secx + tanx)^n (+c)$$

(2) u = 1/x is a potentially useful substitution

Example 1:
$$I = \int \frac{1}{x\sqrt{1-x^2}} dx$$

Let u = 1/x so that $du = -1/x^2 dx$ and $dx = -x^2 du$,

so that
$$I = -\int \frac{ux^2}{\sqrt{1-\frac{1}{u^2}}} du = -\int \frac{u^2x^2}{\sqrt{u^2-1}} du$$

$$= -\int \frac{1}{\sqrt{u^2 - 1}} du = -\operatorname{arcosh}(1/x)$$

Example 2: Consider $I = \int \frac{1}{(a^2 + x^2)^r} dx$

Let
$$t = \frac{a}{x}$$
, so that $dt = -\frac{a}{x^2} dx$

and
$$I = \int \frac{-\left(\frac{a}{t}\right)^2/a}{(a^2 + \left(\frac{a}{t}\right)^2)^r} dt = -a^{1-2r} \int \frac{t^{2r-2}}{(t^2+1)^r} dt$$

If
$$r = \frac{3}{2}$$
, then $I = a^{-2} \int \frac{t}{(t^2+1)^{\frac{3}{2}}} dt$,

and we can then make the substitution $u = t^2$ (as $\int t \, dt = \frac{1}{2}t^2$, and $\frac{1}{(t^2+1)^{\frac{3}{2}}}$ is an integrable function of t^2).

(3) Miscellaneous substitutions

(3.1) Example:
$$I = \int \frac{1}{x(a+bx^n)} dx$$

Let
$$\frac{1}{z} = x^n$$
, so that $-\frac{1}{z^2} dz = nx^{n-1} dx$

Then
$$I = \int \frac{x^{n-1}}{x^n(a+bx^n)} dx = \int \frac{(-\frac{1}{nz^2})}{(\frac{1}{z})(a+\frac{b}{z})} dz$$

$$=-\frac{1}{n}\int \frac{1}{az+b} dz$$

(3.2) Example:
$$I = \int \frac{1}{x\sqrt{a+bx^n}} dx$$

Let
$$\frac{1}{z^2} = x^n$$
, so that $-\frac{2}{z^3} dz = nx^{n-1}dx$

Then
$$I = \int \frac{x^{n-1}}{x^n \sqrt{a + bx^n}} dx$$

$$= \int \frac{(-\frac{2}{nz^3})}{(\frac{1}{z^2})\sqrt{a + \frac{b}{z^2}}} dz$$

$$= -\frac{2}{n} \int \frac{1}{\sqrt{az^2 + b}} dz$$

(3.3) Example:
$$I = \int \frac{x^n}{\sqrt{a+bx}} dx$$

Let $a + bx = z^2$, so that b dx = 2z dz

Then
$$I = \int \frac{(z^2 - a)^n}{b^n z} \cdot \frac{2z}{b} dz$$

$$= \frac{2}{h^{n+1}} \int (z^2 - a)^n dz$$

(4) Pitfalls with substitutions

(4.1) u=1/x won't be valid for x=0, but it can be applied in the case of $\int_0^2 \frac{1}{(1+x^2)^{\frac{3}{2}}} dx$, for example, by considering

$$\lim_{c \to 0^+} \int_c^2 \frac{1}{(1+x^2)^{\frac{3}{2}}} \, dx$$

(4.2) Consider
$$I = \int_{-2}^{-1} \frac{1}{(1+x^2)^{\frac{3}{2}}} dx$$

With
$$x = \frac{1}{t}$$
, $dx = -\frac{1}{t^2}dt$,

$$I = \int_{-2}^{-1} \frac{-\frac{1}{t^2}}{(1 + \frac{1}{t^2})^{\frac{3}{2}}} dt$$

But now note that, for the domain of this integral, t < 0, so that we cannot rewrite $t^3(1+\frac{1}{t^2})^{\frac{3}{2}}$ as $(t^2+1)^{\frac{3}{2}}$, because $(t^2+1)^{\frac{3}{2}}>0$, whereas $t^3(1+\frac{1}{t^2})^{\frac{3}{2}}<0$ $(t^3=t^{2\times\frac{3}{2}})$, but this doesn't equal $(t^2)^{\frac{3}{2}}$ if t<0; in general, $t^{ab}=(t^a)^b$ is not valid for t<0 unless both a & b are integers).

However, we can make the substitution $x = -\frac{1}{t}$ instead.

(4.3) Consider
$$I = \int_{-1}^{1} \frac{t}{(t^2+1)^{\frac{3}{2}}} dt$$

The integrand is an odd function, and so *I* must equal zero. (See below: "Even and Odd functions".)

Writing $u=t^2$, $du=2t\ dt$ gives $I=-\int_{\frac{1}{4}}^{\frac{1}{4}}\frac{\left(\frac{1}{2}\right)}{(u+1)^{\frac{3}{2}}}\ du=0$, as expected; however, the substitution isn't valid for t<0, as t^2 then doesn't increase as t increases.

(5) Substitutions in definite integrals

Look for a substitution that reverses the limits (and then take advantage of the fact that $\int_a^b f(x)dx = -\int_b^a f(x)dx$).

(i) $\int_0^\infty f(x)dx$: When $u=\frac{1}{x}$, $\int_0^\infty \to \int_\infty^0$ [though in practice we would need to consider $\lim_{c\to 0^+\& d\to\infty} \int_c^d f(x)\ dx$, as $u=\frac{1}{x}$ is undefined at x=0 and the d is needed to cope with the improper integral.]

(ii)
$$\int_0^a f(x)dx$$
: When $u = a - x$, $\int_0^a \rightarrow \int_a^0$

(6) Alternative substitutions

 $sec\theta$ can often be used instead of coshx, and $tan\theta$ instead of sinhx.

(7)
$$t = \tan\left(\frac{x}{2}\right)$$
 substitution

The substitution $t = \tan(\frac{x}{2})$ is usually a method of last resort: it can convert an integrand involving trig. functions to one involving polynomial expressions.

$$t = \tan\left(\frac{x}{2}\right) \Rightarrow tanx = \frac{2t}{1-t^2}$$

Referring to the right-angled triangle shown,

the hypotenuse =
$$\sqrt{(1-t^2)^2+4t^2}$$

$$=\sqrt{1+2t^2+t^4} = 1+t^2$$
 (conveniently)

$$\frac{dt}{dx} = \sec^2\left(\frac{x}{2}\right) \cdot \frac{1}{2} \text{ , so that } \frac{dx}{dt} = \frac{2}{\sec^2\left(\frac{x}{2}\right)} = \frac{2}{1+t^2}$$

Example:
$$\int secx \ dx = \int \frac{1+t^2}{1-t^2} \cdot \frac{2}{1+t^2} \ dt = 2\int \frac{1}{1-t^2} \ dt$$

$$= \int \frac{1}{1-t} + \frac{1}{1+t} \ dt = -\ln|1-t| + \ln|1+t| = \ln|\frac{1+t}{1-t}| = \ln|\frac{1+2t+t^2}{1-t^2}|$$

$$= \ln|\frac{1+t^2}{1-t^2} + \frac{2t}{1-t^2}| = \ln|secx + tanx|$$

(B) Rearrangements

(1) It might be possible to rearrange an integrand into the form

f(x)g'(x) + f'(x)g(x) + h(x), where h(x) can be integrated easily, in which case $\int f(x)g'(x) + f'(x)g(x) \, dx = f(x)g(x)$ [from the product rule for differentiation, or integration by parts] Example: $\int 2\sqrt{1+x^3} + \frac{3x^3}{\sqrt{1+x^3}} \, dx$ $\int 2\sqrt{1+x^3} \, dx = 2x\sqrt{1+x^3} - \int 2x \cdot \frac{\frac{1}{2}(3x^2)}{\sqrt{1+x^3}} \, dx$ (by Parts),

$$\int 2\sqrt{1+x^3} \, dx = 2x\sqrt{1+x^3} - \int 2x \cdot \frac{\frac{1}{2}(3x^2)}{\sqrt{1+x^3}} \, dx \text{ (by Parts)},$$

so that
$$\int 2\sqrt{1+x^3} + \frac{3x^3}{\sqrt{1+x^3}} \, dx = 2x\sqrt{1+x^3} + c$$

(2) Inequalities of the form $\int_a^\lambda f(x) dx > g(\lambda)$ can sometimes be proved by rewriting $g(\lambda)$ as $\int_a^\lambda h(x) dx$ (by differentiating g(x) to obtain h(x), if g(a) = 0) and then showing that $\int_a^\lambda f(x) - h(x) \, dx > 0$, by rearranging f(x) - h(x) into an expression that is positive for $a < x < \lambda$

$$(3) \int \sin(mx) \cos(nx) dx = \frac{1}{2} \int \sin(m+n) x + \sin(m-n) x dx$$

(C) Miscellaneous

(1) Even and odd functions

[An even function f(x) is such that f(-x) = f(x); an odd function is such that f(-x) = -f(x).]

As
$$\frac{1}{(1+x^2)^{\frac{3}{2}}}$$
 is an even function, $\int_{-2}^{2} \frac{1}{(1+x^2)^{\frac{3}{2}}} dx = 2 \int_{0}^{2} \frac{1}{(1+x^2)^{\frac{3}{2}}} dx$

As
$$\frac{x}{(1+x^2)^{\frac{3}{2}}}$$
 is an odd function, $\int_{-2}^{2} \frac{x}{(1+x^2)^{\frac{3}{2}}} dx = 0$ (if the area under

the curve to the right of the y-axis is A, then the area to the left of

the *y*-axis is -A).

- (2) Questions that can be written in the form "Show that $\int_a^b f(x)dx = g(b) c$ " may be tackled by establishing that $\frac{d}{dx}g(x) = f(x) \text{ and that } g(a) = c \text{ (where typically } a \text{ might equal } 0).$
- (3) To find $\int f(x)dx = g(x)$, it might be the case that g(x) appears in a previous part of a question. Differentiate g(x) to see if this is the case. [See STEP 2016, P2, Q7(iv)]
- (4) When manipulating an inequality involving an integral, it may be possible to simplify the integrand, as shown in the following example:

$$\int_0^{\lambda} (\sec x \cos \lambda + \tan x)^n dx < \int_0^{\lambda} (\sec x \cos x + \tan x)^n dx,$$
as $x < \lambda \Rightarrow \cos x > \cos \lambda$ (given that $0 < \lambda < \frac{\pi}{2}$),
$$= \int_0^{\lambda} (1 + \tan x)^n dx$$
[See STEP 2021, P3, Q3]

(5)
$$\int_{-a}^{a} f(-x) dx = \int_{-a}^{a} f(x) dx$$

Proof

Let u = -x, so that du = -dx, and

$$\int_{-a}^{a} f(-x) \, dx = \int_{a}^{-a} f(u)(-du) = \int_{-a}^{a} f(u) \, du = \int_{-a}^{a} f(x) \, dx$$

[Alternatively, considering the integral as an area under a curve, note that f(-x) is the reflection of f(x) about the y-axis, so that

$$\int_{-a}^{0} f(-x) dx = B = \int_{0}^{a} f(x) dx$$
 (referring to the diagram below)

and
$$\int_0^a f(-x) dx = A = \int_{-a}^0 f(x) dx$$
,

so that
$$\int_{-a}^{a} f(-x) dx = B + A = A + B = \int_{-a}^{a} f(x) dx$$

(6)
$$\int_0^a f(a-x) dx = \int_0^a f(x) dx$$

Proof

Let u = a - x, so that du = -dx and

$$\int_0^a f(a-x) \, dx = \int_0^0 f(u) \, (-du) = \int_0^a f(u) \, du = \int_0^a f(x) \, dx$$

[Note that f(a - x) is the reflection of f(x) about $x = \frac{a}{2}$.]

(7) To find $\int cosech^2x \, dx$, note that $\frac{d}{dx}(tanhx) = sech^2x$ and establish that $\frac{d}{dx}(cothx) = -cosech^2x$