See also: "Integration Methods".
Contents
(A) Substitutions
(B) Rearrangements
(C) Miscellaneous

(A) Substitutions

(1) The standard substitution method is to write an integral in the form $\int f(x) h(g(x)) d x$, where $\int f(x) d x=g(x)$, and then the substitution $u=g(x)$ will work, provided that $h(u)$ can be integrated.

In some cases it may be easier to spot a derivative, rather than an integral.

Consider $I=\int \sec x(\sec x+\tan x)^{n} d x$ for example.
$\int \sec x d x=\ln |\sec x+\tan x|$, which isn't of any use (ie the rest of the integrand $\left[(\sec x+\tan x)^{n}\right]$ isn't a function of
$\ln |\sec x+\tan x|$ that can be integrated easily).
But if a substitution is to work, it will be $u=\sec x+\tan x$,
and $\frac{d}{d x}(\sec x+\tan x)=\sec x \tan x+\sec ^{2} x$
Fortunately I can be rearranged to give
$\int(\sec x+\tan x)^{n-1}\left(\sec ^{2} x+\sec x \tan x\right) d x$, and making the substitution $u=\sec x+\tan x$ then gives
$I=\frac{1}{n}(\sec x+\tan x)^{n}(+c)$
(2) $u=1 / x$ is a potentially useful substitution

Example 1: $I=\int \frac{1}{x \sqrt{1-x^{2}}} d x$
Let $u=1 / x$ so that $d u=-1 / x^{2} d x$ and $d x=-x^{2} d u$,
so that $I=-\int \frac{u x^{2}}{\sqrt{1-\frac{1}{u^{2}}}} d u=-\int \frac{u^{2} x^{2}}{\sqrt{u^{2}-1}} d u$
$=-\int \frac{1}{\sqrt{u^{2}-1}} d u=-\operatorname{arcosh} u=-\operatorname{arcosh}(1 / x)$

Example 2: Consider $I=\int \frac{1}{\left(a^{2}+x^{2}\right)^{r}} d x$
Let $t=\frac{a}{x}$, so that $d t=-\frac{a}{x^{2}} d x$
and $I=\int \frac{-\left(\frac{a}{t}\right)^{2} / a}{\left(a^{2}+\left(\frac{a}{t}\right)^{2}\right)^{r}} d t=-a^{1-2 r} \int \frac{t^{2 r-2}}{\left(t^{2}+1\right)^{r}} d t$
If $r=\frac{3}{2}$, then $I=a^{-2} \int \frac{t}{\left(t^{2}+1\right)^{\frac{3}{2}}} d t$,
and we can then make the substitution $u=t^{2} \quad$ (as $\int t d t=\frac{1}{2} t^{2}$, and $\frac{1}{\left(t^{2}+1\right)^{\frac{3}{2}}}$ is an integrable function of $\left.t^{2}\right)$.
(3) Miscellaneous substitutions
(3.1) Example: $I=\int \frac{1}{x\left(a+b x^{n}\right)} d x$

Let $\frac{1}{z}=x^{n}$, so that $-\frac{1}{z^{2}} d z=n x^{n-1} d x$
Then $I=\int \frac{x^{n-1}}{x^{n}\left(a+b x^{n}\right)} d x=\int \frac{\left(-\frac{1}{n z^{2}}\right)}{\left(\frac{1}{z}\right)\left(a+\frac{b}{z}\right)} d z$
$=-\frac{1}{n} \int \frac{1}{a z+b} d z$
(3.2) Example: $I=\int \frac{1}{x \sqrt{a+b x^{n}}} d x$

Let $\frac{1}{z^{2}}=x^{n}$, so that $-\frac{2}{z^{3}} d z=n x^{n-1} d x$
Then $I=\int \frac{x^{n-1}}{x^{n} \sqrt{a+b x^{n}}} d x$
$=\int \frac{\left(-\frac{2}{n z^{3}}\right)}{\left(\frac{1}{z^{2}}\right) \sqrt{a+\frac{b}{z^{2}}}} d z$
$=-\frac{2}{n} \int \frac{1}{\sqrt{a z^{2}+b}} d z$
(3.3) Example: $I=\int \frac{x^{n}}{\sqrt{a+b x}} d x$

Let $a+b x=z^{2}$, so that $b d x=2 z d z$
Then $I=\int \frac{\left(z^{2}-a\right)^{n}}{b^{n} Z} \cdot \frac{2 z}{b} d z$
$=\frac{2}{b^{n+1}} \int\left(z^{2}-a\right)^{n} d z$
(4) Pitfalls with substitutions
(4.1) $u=1 / x$ won't be valid for $x=0$, but it can be applied in the case of $\int_{0}^{2} \frac{1}{\left(1+x^{2}\right)^{\frac{3}{2}}} d x$, for example, by considering $\lim _{c \rightarrow 0^{+}} \int_{c}^{2} \frac{1}{\left(1+x^{2}\right)^{\frac{3}{2}}} d x$
(4.2) Consider $I=\int_{-2}^{-1} \frac{1}{\left(1+x^{2}\right)^{\frac{3}{2}}} d x$

With $x=\frac{1}{t}, d x=-\frac{1}{t^{2}} d t$,
$I=\int_{-2}^{-1} \frac{-\frac{1}{t^{2}}}{\left(1+\frac{1}{t^{2}}\right)^{\frac{3}{2}}} d t$
But now note that, for the domain of this integral, $t<0$, so that we cannot rewrite $t^{3}\left(1+\frac{1}{t^{2}}\right)^{\frac{3}{2}}$ as $\left(t^{2}+1\right)^{\frac{3}{2}}$, because $\left(t^{2}+1\right)^{\frac{3}{2}}>0$, whereas $t^{3}\left(1+\frac{1}{t^{2}}\right)^{\frac{3}{2}}<0\left(t^{3}=t^{2 \times \frac{3}{2}}\right.$, but this doesn't equal $\left(t^{2}\right)^{\frac{3}{2}}$ if $t<0$; in general, $t^{a b}=\left(t^{a}\right)^{b}$ is not valid for $t<0$ unless both $a \& b$ are integers).

However, we can make the substitution $x=-\frac{1}{t}$ instead.
(4.3) Consider $I=\int_{-1}^{1} \frac{t}{\left(t^{2}+1\right)^{\frac{3}{2}}} d t$

The integrand is an odd function, and so I must equal zero. (See below: "Even and Odd functions".)

Writing $u=t^{2}, d u=2 t d t$ gives $I=-\int_{\frac{1}{4}}^{\frac{1}{4}} \frac{\left(\frac{1}{2}\right)}{(u+1)^{\frac{3}{2}}} d u=0$, as expected; however, the substitution isn't valid for $t<0$, as t^{2} then doesn't increase as t increases.
(5) Substitutions in definite integrals

Look for a substitution that reverses the limits (and then take advantage of the fact that $\left.\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x\right)$.
(i) $\int_{0}^{\infty} f(x) d x$: When $u=\frac{1}{x}, \int_{0}^{\infty} \rightarrow \int_{\infty}^{0}$ [though in practice we would need to consider $\lim _{c \rightarrow 0^{+} \& d \rightarrow \infty} \int_{c}^{d} f(x) d x$, as $u=\frac{1}{x}$ is undefined at $x=0$ and the d is needed to cope with the improper integral.]
(ii) $\int_{0}^{a} f(x) d x$: When $u=a-x, \int_{0}^{a} \rightarrow \int_{a}^{0}$
(6) Alternative substitutions
$\sec \theta \operatorname{can}$ often be used instead of $\cosh x$, and $\tan \theta$ instead of $\sinh x$.
(7) $t=\tan \left(\frac{x}{2}\right)$ substitution

The substitution $t=\tan \left(\frac{x}{2}\right)$ is usually a method of last resort: it can convert an integrand involving trig. functions to one involving polynomial expressions.
$t=\tan \left(\frac{x}{2}\right) \Rightarrow \tan x=\frac{2 t}{1-t^{2}}$
Referring to the right-angled triangle shown,
the hypotenuse $=\sqrt{\left(1-t^{2}\right)^{2}+4 t^{2}}$
$=\sqrt{1+2 t^{2}+t^{4}}=1+t^{2}$ (conveniently)
$\frac{d t}{d x}=\sec ^{2}\left(\frac{x}{2}\right) \cdot \frac{1}{2}$, so that $\frac{d x}{d t}=\frac{2}{\sec ^{2}\left(\frac{x}{2}\right)}=\frac{2}{1+t^{2}}$

Example: $\int \sec x d x=\int \frac{1+t^{2}}{1-t^{2}} \cdot \frac{2}{1+t^{2}} \mathrm{dt}=2 \int \frac{1}{1-t^{2}} d t$
$=\int \frac{1}{1-t}+\frac{1}{1+t} d t=-\ln |1-t|+\ln |1+\mathrm{t}|=\ln \left|\frac{1+t}{1-t}\right|=\ln \left|\frac{1+2 t+t^{2}}{1-t^{2}}\right|$
$=\ln \left|\frac{1+t^{2}}{1-t^{2}}+\frac{2 t}{1-t^{2}}\right|=\ln |\sec x+\tan x|$

(B) Rearrangements

(1) It might be possible to rearrange an integrand into the form
$f(x) g^{\prime}(x)+f^{\prime}(x) g(x)+h(x)$, where $h(x)$ can be integrated easily, in which case $\int f(x) g^{\prime}(x)+f^{\prime}(x) g(x) d x=f(x) g(x)$ [from the product rule for differentiation, or integration by parts] Example: $\int 2 \sqrt{1+x^{3}}+\frac{3 x^{3}}{\sqrt{1+x^{3}}} d x$
$\int 2 \sqrt{1+x^{3}} d x=2 x \sqrt{1+x^{3}}-\int 2 x \cdot \frac{\frac{1}{2}\left(3 x^{2}\right)}{\sqrt{1+x^{3}}} d x$ (by Parts),
so that $\int 2 \sqrt{1+x^{3}}+\frac{3 x^{3}}{\sqrt{1+x^{3}}} d x=2 x \sqrt{1+x^{3}}+c$
(2) Inequalities of the form $\int_{a}^{\lambda} f(x) d x>g(\lambda)$ can sometimes be proved by rewriting $g(\lambda)$ as $\int_{a}^{\lambda} h(x) d x$ (by differentiating $g(x)$ to obtain $h(x)$, if $g(a)=0)$ and then showing that $\int_{a}^{\lambda} f(x)-h(x) d x>0$, by rearranging $f(x)-h(x)$ into an expression that is positive for $a<x<\lambda$
(3) $\int \sin (m x) \cos (n x) d x=\frac{1}{2} \int \sin (m+n) x+\sin (m-n) x d x$

(C) Miscellaneous

(1) Even and odd functions
[An even function $f(x)$ is such that $f(-x)=f(x)$; an odd function is such that $f(-x)=-f(x)$.]
As $\frac{1}{\left(1+x^{2}\right)^{\frac{3}{2}}}$ is an even function, $\int_{-2}^{2} \frac{1}{\left(1+x^{2}\right)^{\frac{3}{2}}} d x=2 \int_{0}^{2} \frac{1}{\left(1+x^{2}\right)^{\frac{3}{2}}} d x$
As $\frac{x}{\left(1+x^{2}\right)^{\frac{3}{2}}}$ is an odd function, $\int_{-2}^{2} \frac{x}{\left(1+x^{2}\right)^{\frac{3}{2}}} d x=0$ (if the area under the curve to the right of the y-axis is A, then the area to the left of
the y-axis is $-A)$.
(2) Questions that can be written in the form "Show that $\int_{a}^{b} f(x) d x=g(b)-c^{\prime \prime}$ may be tackled by establishing that $\frac{d}{d x} g(x)=f(x)$ and that $g(a)=c$ (where typically a might equal $0)$.
(3) To find $\int f(x) d x=g(x)$, it might be the case that $g(x)$ appears in a previous part of a question. Differentiate $g(x)$ to see if this is the case. [See STEP 2016, P2, Q7(iv)]
(4) When manipulating an inequality involving an integral, it may be possible to simplify the integrand, as shown in the following example:
$\int_{0}^{\lambda}(\sec x \cos \lambda+\tan x)^{n} d x<\int_{0}^{\lambda}(\sec x \cos x+\tan x)^{n} d x$,
as $x<\lambda \Rightarrow \cos x>\cos \lambda$ (given that $0<\lambda<\frac{\pi}{2}$),
$=\int_{0}^{\lambda}(1+\tan x)^{n} d x$
[See STEP 2021, P3, Q3]
(5) $\int_{-a}^{a} f(-x) d x=\int_{-a}^{a} f(x) d x$

Proof

Let $u=-x$, so that $d u=-d x$, and
$\int_{-a}^{a} f(-x) d x=\int_{a}^{-a} f(u)(-d u)=\int_{-a}^{a} f(u) d u=\int_{-a}^{a} f(x) d x$
[Alternatively, considering the integral as an area under a curve, note that $f(-x)$ is the reflection of $f(x)$ about the y-axis, so that $\int_{-a}^{0} f(-x) d x=B=\int_{0}^{a} f(x) d x$ (referring to the diagram below)
and $\int_{0}^{a} f(-x) d x=A=\int_{-a}^{0} f(x) d x$,
so that $\int_{-a}^{a} f(-x) d x=B+A=A+B=\int_{-a}^{a} f(x) d x$

(6) $\int_{0}^{a} f(\mathrm{a}-x) d x=\int_{0}^{a} f(x) d x$

Proof

Let $u=a-x$, so that $d u=-d x$ and
$\int_{0}^{a} f(\mathrm{a}-x) d x=\int_{\mathrm{a}}^{0} f(\mathrm{u})(-\mathrm{du})=\int_{0}^{a} f(u) d u=\int_{0}^{a} f(x) d x$
[Note that $f(\mathrm{a}-x)$ is the reflection of $f(x)$ about $x=\frac{a}{2}$.]
(7) To find $\int \operatorname{cosech}^{2} x d x$, note that $\frac{d}{d x}(\tanh x)=\operatorname{sech}^{2} x$ and establish that $\frac{d}{d x}(\operatorname{coth} x)=-\operatorname{cosech}^{2} x$

