Integration Theory (7 pages; 7/11/24)

Contents

- (A) The two interpretations of integration
- (B) Indefinite integration
- (C) Fundamental Theorem of Calculus

(D)
$$
\int \frac{1}{x} dx = \ln|x|
$$

(E) Substitutions

(A) The two interpretations of integration

Integration can be interpreted as either the area under a curve, or as the opposite of differentiation. To show how these two interpretations can be reconciled, refer to the diagram below.

 ν & s can be interpreted as speed and displacement, but the argument holds for other situations. *s* is defined to be the area under the curve of v , and, by the first definition of integration,

$$
s = \int v \, dt \, (A)
$$

(to work out a specific area, limits would obviously be needed).

We want to show that integration is also the opposite of differentiation. This will be the case if $\frac{ds}{dt} = v$

From the diagram, $\frac{ds}{dt}$ is the rate at which the area increases, and is the limit as $\delta t \to 0$ of $\frac{\delta s}{\delta t}$, which equals v, since $\delta s \to v \delta t$ as $\delta t \to 0$. Thus we have shown that $\frac{ds}{dt} = v$.

In the case where $v \& s$ are speed and displacement, this works because speed is the rate of change of displacement, and displacement = speed \times time if the speed is constant (so that the displacement is the area under a horizontal line), and the natural extension of this is for the displacement to be the area under the speed-time graph in the case of a varying speed.

(B) Indefinite integration

In the definite integral $\int_{t_1}^{t_2} v(t) dt$, t is appearing as a parameter (which ranges from t_1 to t_2). It can just as easily be written as

$$
\int_{t_1}^{t_2} v(x) dx
$$

If t_2 is now considered to be a variable value of t , so that the definite integral represents the area under the curve as a function of t_2 , then, writing t instead of t_2 : $\int_{t_1}^t v(x) dx = s(t) - s(t_1)$ t_1

```
fmng.uk
```
(where $v(x)$ is the derivative of $s(x)$; eg speed and displacement, respectively).

The integral is now a function of t (whereas the definite integral

 $\int_{t_1}^{t_2} v(t) dt$ was a fixed value).

It is termed an 'indefinite' integral and, by convention, the following notation is adopted: $\int v(t) dt = s(t) + C$

C in effect equals $-s(t_1)$ and is a constant; ie not changing with t $(C$ is the 'constant of integration'). It can take any value (including positive values, since $s(t_1)$ can generally be made to be negative).

Note that t has been reintroduced on the left hand side, as it can no longer be confused with the upper limit of integration. This notation is slightly unsatisfactory, since the t on the left hand side is a parameter over which the integration is being carried out, whereas the t on the right hand side is the upper limit of the integration. However, the t on the left hand side does serve to indicate that the integral is to be a function of t .

(C) Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus states that

if
$$
F(x) = \int_a^x f(t) dt
$$
, then $F'(x) = f(x)$

Proof

$$
\delta F \approx f(t)\delta t \Rightarrow \frac{\delta F}{\delta t} \approx f(t)
$$

$$
F'(t) \text{ or } \frac{dF}{dt} = \lim_{\delta t \to 0} \frac{\delta F}{\delta t} = f(t)
$$

and at $t = x$, $F'(x) = f(x)$

(D)
$$
\int \frac{1}{x} dx = \ln |x|
$$

Given that $\int \frac{1}{x} dx = \ln x$ for $x > 0$, it can be shown that
 $\int \frac{1}{x} dx = \ln |x|$ for all $x \neq 0$

Method 1

If $\int \frac{1}{x}$ $\frac{1}{x}dx = \ln x$ for $x > 0$, then $\frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{1}{x}$ for $x > 0$ For the case where $x < 0$:

Let
$$
y = -x
$$
, so that $\frac{d}{dy} (ln y) = \frac{1}{y}$, as $y > 0$

[To convert back to $xs:$]

Then, as $\frac{d}{dt}$ $\frac{d}{dy}$ (lny) = $\frac{d}{dy}$ $\frac{d}{dx}$ (lny). $\frac{dx}{dy}$ $\frac{ax}{dy}$, it follows that $\frac{d}{dx}$ (lny). $\frac{dx}{dy}$ $\frac{dx}{dy} = \frac{1}{(-x)}$ $(-x)$ giving $\frac{d}{dx} (ln[-x])(-1) = \frac{1}{(-1)}$ $(-x)$ and so $\frac{d}{dx}$ (ln |x|) = $\frac{1}{x}$ $\frac{1}{x}$ for $x < 0$ (*) and therefore $\int \frac{1}{x}$ $\frac{1}{x}dx = \ln|x|$ for $x < 0$, as well as $x > 0$

[Note that the function $y = \ln |x|$ for $x < 0$ is the reflection in the y-axis of $y = \ln x$ (*for* $x > 0$), and therefore has a negative gradient, which agrees with (*).]

Method 2

Referring to the diagram below, where $u = -x > 0$ & $c > 0$,

$$
\int_{-c}^{x} \frac{1}{t} dt = \int_{-c}^{-u} \frac{1}{t} dt
$$

= - (positive) area between graph and *t*-axis on LHS
= - (positive) area between graph and *t*-axis on RHS
= - $\int_{u}^{c} \frac{1}{t} dt = \int_{c}^{u} \frac{1}{t} dt = lnu - lnc$
As $\int \frac{1}{x} dx$ only differs from $\int_{-c}^{x} \frac{1}{t} dt$ by an arbitrary constant, it
follows that, when $x < 0$, $\int \frac{1}{x} dx = ln u + C = ln|-x| + C$, as
required.

(E) Substitutions

Example: $I = \int \frac{\sin x}{\cos x}$ $\frac{\sin x}{\cos x} dx$

Informal approach (but acceptable for exam purposes)

Let
$$
u = \cos x
$$
, so that $du = -\sin x \, dx$,
and then $I = -\int \frac{1}{u} \, du = -\ln u + C = -\ln(1)$

and then
$$
I = -\int \frac{1}{u} du = -\ln u + C = -\ln(\cos x) + C
$$

= $\ln(\sec x) + C$

More rigorous approach

Let $u = \cos x$

[Result to prove: $I = \int \frac{\sin x}{\cos x}$ $cos x$ dx $\frac{u}{du}$ du;

then, as
$$
\frac{dx}{du} = \frac{1}{\frac{du}{dx}} = \frac{1}{-\sin x}
$$
, $I = -\int \frac{1}{u} du$

Now,
$$
I = \int \frac{\sin x}{\cos x} dx \Rightarrow \frac{dI}{dx} = \frac{\sin x}{\cos x}
$$

and
$$
\frac{dI}{du} = \frac{dI}{dx} \cdot \frac{dx}{du} = \frac{\sin x}{\cos x} \cdot \frac{dx}{du}
$$
,

fmng.uk

so that
$$
I = \int \frac{\sin x}{\cos x} \frac{dx}{du} du
$$

Then $\frac{dx}{du} = \frac{1}{\frac{du}{dx}} = \frac{1}{-\sin x}$,

so that
$$
I = -\int \frac{1}{u} du
$$
 etc