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Integration Theory (7 pages; 7/11/24) 
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(A) The two interpretations of integration  

Integration can be interpreted as either the area under a curve, or 

as the opposite of differentiation. To show how these two 

interpretations can be reconciled, refer to the diagram below. 
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𝑣 & 𝑠 can be interpreted as speed and displacement, but the 

argument holds for other situations. 𝑠 is defined to be the area 

under the curve of 𝑣, and, by the first definition of integration,  

 𝑠 = ∫ 𝑣 𝑑𝑡  (A) 

(to work out a specific area, limits would obviously be needed). 

We want to show that integration is also the opposite of 

differentiation. This will be the case if  
𝑑𝑠

𝑑𝑡
= 𝑣 

From the diagram, 
𝑑𝑠

𝑑𝑡
  is the rate at which the area increases, and 

is the limit as  𝛿𝑡 → 0  of  
𝛿𝑠

𝛿𝑡
 , which equals 𝑣, since 𝛿𝑠 → 𝑣𝛿𝑡  as 

𝛿𝑡 → 0. Thus we have shown that   
𝑑𝑠

𝑑𝑡
= 𝑣. 

In the case where 𝑣 & 𝑠 are speed and displacement, this works 

because speed is the rate of change of displacement, and 

displacement = speed × time if the speed is constant (so that the 

displacement is the area under a horizontal line), and the natural 

extension of this is for the displacement to be the area under the 

speed-time graph in the case of a varying speed. 

 

(B)  Indefinite integration   

In the definite integral ∫ 𝑣(𝑡)𝑑𝑡
𝑡2

𝑡1
 , 𝑡 is appearing as a parameter 

(which ranges from 𝑡1 to  𝑡2). It can just as easily be written as  

∫ 𝑣(𝑥)𝑑𝑥
𝑡2

𝑡1
  

If 𝑡2 is now considered to be a variable value of 𝑡, so that the 

definite integral represents the area under the curve as a function 

of 𝑡2, then, writing 𝑡 instead of 𝑡2: ∫ 𝑣(𝑥)𝑑𝑥 = 𝑠(𝑡) − 𝑠(𝑡1)
𝑡

𝑡1
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(where 𝑣(𝑥) is the derivative of  𝑠(𝑥); eg speed and displacement, 

respectively). 

The integral is now a function of t (whereas the definite integral    

∫ 𝑣(𝑡)𝑑𝑡
𝑡2

𝑡1
  was a fixed value).  

It is termed an ‘indefinite’ integral and, by convention, the 

following notation is adopted: ∫ 𝑣(𝑡)𝑑𝑡 = 𝑠(𝑡) + 𝐶 

 

𝐶  in effect equals −𝑠(𝑡1)  and is a constant ; ie not changing with 𝑡 

(𝐶 is the ‘constant of integration’). It can take any value (including 

positive values, since 𝑠(𝑡1)  can generally be made to be negative). 

Note that 𝑡 has been reintroduced on the left hand side, as it can 

no longer be confused with the upper limit of integration. This 

notation is slightly unsatisfactory, since the 𝑡 on the left hand side 

is a parameter over which the integration is being carried out, 

whereas the 𝑡 on the right hand side is the upper limit of the 

integration. However, the 𝑡 on the left hand side does serve to 

indicate that the integral is to be a function of 𝑡. 

 

(C) Fundamental Theorem of Calculus 

The Fundamental Theorem of Calculus states that 

if 𝐹(𝑥) = ∫ 𝑓(𝑡)
𝑥

𝑎
𝑑𝑡 , then 𝐹′(𝑥) = 𝑓(𝑥) 
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Proof 

 

 

 

 

 

 

 

 

 

𝛿𝐹 ≈ 𝑓(𝑡)𝛿𝑡 ⇒
𝛿𝐹

𝛿𝑡
≈ 𝑓(𝑡)  

𝐹′(𝑡) 𝑜𝑟 
𝑑𝐹

𝑑𝑡
= lim

𝛿𝑡→0

𝛿𝐹

𝛿𝑡
= 𝑓(𝑡)  

and at 𝑡 = 𝑥,  𝐹′(𝑥) = 𝑓(𝑥) 

 

(D) ∫
𝟏

𝒙
𝒅𝒙 = 𝐥𝐧 |𝒙| 

Given that  ∫
1

𝑥
𝑑𝑥 = ln 𝑥  for 𝑥 > 0, it can be shown that 

∫
1

𝑥
𝑑𝑥 = ln|𝑥|  for all 𝑥 ≠ 0 

Method 1 

If  ∫
1

𝑥
𝑑𝑥 = ln 𝑥   for 𝑥 > 0,  then  

𝑑

𝑑𝑥
(𝑙𝑛𝑥) =

1

𝑥
  for 𝑥 > 0 

For the case where 𝑥 < 0: 

Let 𝑦 = −𝑥, so that   
𝑑

𝑑𝑦
(𝑙𝑛𝑦) =

1

𝑦
  , as 𝑦 > 0 
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[To convert back to 𝑥𝑠: ]  

Then, as  
𝑑

𝑑𝑦
(𝑙𝑛𝑦) =

𝑑

𝑑𝑥
(𝑙𝑛𝑦).

𝑑𝑥

𝑑𝑦
 , 

it follows that  
𝑑

𝑑𝑥
(𝑙𝑛𝑦).

𝑑𝑥

𝑑𝑦
=

1

(−𝑥)
 

giving  
𝑑

𝑑𝑥
(𝑙𝑛[−𝑥])(−1) =

1

(−𝑥)
 

and so  
𝑑

𝑑𝑥
(ln |𝑥|) =

1

𝑥
  for 𝑥 < 0     (*) 

and therefore ∫
1

𝑥
𝑑𝑥 = ln|𝑥|  for 𝑥 < 0, as well as 𝑥 > 0 

[Note that the function 𝑦 = ln |x| for 𝑥 < 0  is the reflection in the 

𝑦-axis of  𝑦 = ln 𝑥  (𝑓𝑜𝑟 𝑥 > 0),  and therefore has a negative 

gradient, which agrees with (*).] 

Method 2 

Referring to the diagram below, where 𝑢 = −𝑥 > 0 & 𝑐 > 0, 
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∫
1

𝑡
𝑑𝑡

𝑥

−𝑐
= ∫

1

𝑡
𝑑𝑡

−𝑢

−𝑐
  

=  − (positive) area between graph and 𝑡-axis on LHS 

=  − (positive) area between graph and 𝑡-axis on RHS 

= − ∫
1

𝑡
𝑑𝑡 =

𝑐

𝑢
∫

1

𝑡
𝑑𝑡 = 𝑙𝑛𝑢 − 𝑙𝑛𝑐

𝑢

𝑐
   

As  ∫
1

𝑥
𝑑𝑥 only differs from ∫

1

𝑡
𝑑𝑡

𝑥

−𝑐
 by an arbitrary constant, it 

follows that, when 𝑥 < 0,  ∫
1

𝑥
𝑑𝑥 = 𝑙𝑛 𝑢 + 𝐶 = ln|−𝑥| + 𝐶, as 

required. 

 

(E) Substitutions  

Example: 𝐼 = ∫
𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
 𝑑𝑥 

Informal approach (but acceptable for exam purposes) 

Let 𝑢 = 𝑐𝑜𝑠𝑥, so that 𝑑𝑢 = −𝑠𝑖𝑛𝑥 𝑑𝑥, 

and then  𝐼 = − ∫
1

𝑢
 𝑑𝑢 = − ln 𝑢 + 𝐶 = − ln(𝑐𝑜𝑠𝑥) + 𝐶 

= ln(𝑠𝑒𝑐𝑥) + 𝐶  

More rigorous approach 

Let 𝑢 = 𝑐𝑜𝑠𝑥 

[Result to prove: 𝐼 = ∫
𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
 
𝑑𝑥

𝑑𝑢
 𝑑𝑢; 

then, as 
𝑑𝑥

𝑑𝑢
=

1

(
𝑑𝑢

𝑑𝑥
)

=
1

−𝑠𝑖𝑛𝑥 
 , 𝐼 = − ∫

1

𝑢
 𝑑𝑢] 

Now, 𝐼 = ∫
𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
 𝑑𝑥 ⇒

𝑑𝐼

𝑑𝑥
=

𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
  

and 
𝑑𝐼

𝑑𝑢
=

𝑑𝐼

𝑑𝑥
 .

𝑑𝑥

𝑑𝑢
=

𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
 .

𝑑𝑥

𝑑𝑢
 , 
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so that 𝐼 = ∫
𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
 

𝑑𝑥

𝑑𝑢
 𝑑𝑢 

Then 
𝑑𝑥

𝑑𝑢
=

1

(
𝑑𝑢

𝑑𝑥
)

=
1

−𝑠𝑖𝑛𝑥 
 , 

so that 𝐼 = − ∫
1

𝑢
 𝑑𝑢  etc 

 

 

 

 

 

 


