Integration Theory (7 pages; 7/11/24)

Contents

- (A) The two interpretations of integration
- (B) Indefinite integration
- (C) Fundamental Theorem of Calculus
- (D) $\int \frac{1}{x} dx = \ln|x|$
- (E) Substitutions

(A) The two interpretations of integration

Integration can be interpreted as either the area under a curve, or as the opposite of differentiation. To show how these two interpretations can be reconciled, refer to the diagram below.

v & s can be interpreted as speed and displacement, but the argument holds for other situations. s is defined to be the area under the curve of v, and, by the first definition of integration,

$$s = \int v \, dt$$
 (A)

(to work out a specific area, limits would obviously be needed).

We want to show that integration is also the opposite of differentiation. This will be the case if $\frac{ds}{dt} = v$

From the diagram, $\frac{ds}{dt}$ is the rate at which the area increases, and is the limit as $\delta t \to 0$ of $\frac{\delta s}{\delta t}$, which equals v, since $\delta s \to v \delta t$ as $\delta t \to 0$. Thus we have shown that $\frac{ds}{dt} = v$.

In the case where v & s are speed and displacement, this works because speed is the rate of change of displacement, and displacement = speed \times time if the speed is constant (so that the displacement is the area under a horizontal line), and the natural extension of this is for the displacement to be the area under the speed-time graph in the case of a varying speed.

(B) Indefinite integration

In the definite integral $\int_{t_1}^{t_2} v(t)dt$, t is appearing as a parameter (which ranges from t_1 to t_2). It can just as easily be written as

$$\int_{t_1}^{t_2} v(x) dx$$

If t_2 is now considered to be a variable value of t, so that the definite integral represents the area under the curve as a function of t_2 , then, writing t instead of t_2 : $\int_{t_1}^t v(x) dx = s(t) - s(t_1)$

(where v(x) is the derivative of s(x); eg speed and displacement, respectively).

The integral is now a function of t (whereas the definite integral $\int_{t_1}^{t_2} v(t)dt$ was a fixed value).

It is termed an 'indefinite' integral and, by convention, the following notation is adopted: $\int v(t)dt = s(t) + C$

C in effect equals $-s(t_1)$ and is a constant; ie not changing with t (C is the 'constant of integration'). It can take any value (including positive values, since $s(t_1)$ can generally be made to be negative).

Note that t has been reintroduced on the left hand side, as it can no longer be confused with the upper limit of integration. This notation is slightly unsatisfactory, since the t on the left hand side is a parameter over which the integration is being carried out, whereas the t on the right hand side is the upper limit of the integration. However, the t on the left hand side does serve to indicate that the integral is to be a function of t.

(C) Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus states that

if
$$F(x) = \int_{a}^{x} f(t) dt$$
, then $F'(x) = f(x)$

Proof

$$\delta F \approx f(t)\delta t \Rightarrow \frac{\delta F}{\delta t} \approx f(t)$$

$$F'(t)$$
 or $\frac{dF}{dt} = \lim_{\delta t \to 0} \frac{\delta F}{\delta t} = f(t)$

and at
$$t = x$$
, $F'(x) = f(x)$

(D)
$$\int \frac{1}{x} dx = \ln|x|$$

Given that $\int \frac{1}{x} dx = \ln x$ for x > 0, it can be shown that $\int \frac{1}{x} dx = \ln |x|$ for all $x \neq 0$

Method 1

If
$$\int \frac{1}{x} dx = \ln x$$
 for $x > 0$, then $\frac{d}{dx}(\ln x) = \frac{1}{x}$ for $x > 0$

For the case where x < 0:

Let
$$y = -x$$
, so that $\frac{d}{dy}(lny) = \frac{1}{y}$, as $y > 0$

[To convert back to xs:]

Then, as
$$\frac{d}{dy}(lny) = \frac{d}{dx}(lny) \cdot \frac{dx}{dy}$$
,

it follows that
$$\frac{d}{dx}(lny) \cdot \frac{dx}{dy} = \frac{1}{(-x)}$$

giving
$$\frac{d}{dx}(ln[-x])(-1) = \frac{1}{(-x)}$$

and so
$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$
 for $x < 0$ (*)

and therefore $\int \frac{1}{x} dx = \ln|x|$ for x < 0, as well as x > 0

[Note that the function $y = \ln |x|$ for x < 0 is the reflection in the y-axis of $y = \ln x$ (for x > 0), and therefore has a negative gradient, which agrees with (*).]

Method 2

Referring to the diagram below, where u = -x > 0 & c > 0,

$$\int_{-c}^{x} \frac{1}{t} dt = \int_{-c}^{-u} \frac{1}{t} dt$$

= - (positive) area between graph and t-axis on LHS

= - (positive) area between graph and t-axis on RHS

$$= -\int_{u}^{c} \frac{1}{t} dt = \int_{c}^{u} \frac{1}{t} dt = lnu - lnc$$

As $\int \frac{1}{x} dx$ only differs from $\int_{-c}^{x} \frac{1}{t} dt$ by an arbitrary constant, it follows that, when x < 0, $\int \frac{1}{x} dx = \ln u + C = \ln |-x| + C$, as required.

(E) Substitutions

Example:
$$I = \int \frac{\sin x}{\cos x} dx$$

Informal approach (but acceptable for exam purposes)

Let u = cosx, so that du = -sinx dx,

and then
$$I = -\int \frac{1}{u} du = -\ln u + C = -\ln(\cos x) + C$$

$$= \ln(secx) + C$$

More rigorous approach

Let u = cosx

[Result to prove:
$$I = \int \frac{\sin x}{\cos x} \frac{dx}{du} du$$
;

then, as
$$\frac{dx}{du} = \frac{1}{\left(\frac{du}{dx}\right)} = \frac{1}{-sinx}$$
, $I = -\int \frac{1}{u} \ du$

Now,
$$I = \int \frac{\sin x}{\cos x} dx \Rightarrow \frac{dI}{dx} = \frac{\sin x}{\cos x}$$

and
$$\frac{dI}{dy} = \frac{dI}{dx} \cdot \frac{dx}{dy} = \frac{\sin x}{\cos x} \cdot \frac{dx}{dy}$$
,

so that
$$I = \int \frac{\sin x}{\cos x} \frac{dx}{du} du$$

Then
$$\frac{dx}{du} = \frac{1}{\left(\frac{du}{dx}\right)} = \frac{1}{-\sin x}$$
,

so that
$$I = -\int \frac{1}{u} du$$
 etc