Notes on the Simplex Method (5 pages; 20/5/24)
[These notes assume that the reader is already familiar with the basic ideas behind the Simplex method - see separate notes for this.]
(1) Terminology
(i) standard form is used to describe situations where:

- the objective function is to be maximised (ie rather than minimised)
- the constraints are all of the \leq form (except for $x \geq 0$ etc)
(ii) augmented form: where the inequalities representing the constraints have been converted to equations involving slack variables s_{i} (in the case of \leq constraints) or surplus variables s_{i} (in the case of \geq constraints, where either the Two-Stage Simplex or the Big M method is used).
(iii) After each pass of the method, variables that only appear in one row of the tableau, and have a coefficient of 1 , are referred to as basic variables. Their value at this stage of the method will be the right-hand value for the row in question. This is possible because the other (non-basic) variables (that appear in more than one row) are being set equal to zero.
(2) The idea behind the Simplex method is that the Objective
equation (involving P) is to be manipulated in such a way that P can attain a higher value. This is done by maximising the value of one of the variables $x, y, \ldots, s_{1}, s_{2}, \ldots$ with a negative coefficient; eg, with $P-x-2 y+z-3 s_{1}+s_{2}-s_{3}=7$, it is conventional to maximise s_{1}, because (all else being equal) this gives the best chance of maximising P, when $x, y, z, s_{2} \& s_{3}$ are set equal to zero (and then P becomes $7+3 s_{1}$).
(3) Although it is, in theory, possible to minimise P by maximising the value of a variable with a positive coefficient, it is conventional to use the Simplex method only to maximise P (but see discussion below about the Two-Stage Simplex method). If P is to be minimised, then we can instead maximise $P^{\prime}=-P$.
(4) When carrying out the Ratio test, we need only consider coefficients in the pivot column that have a positive coefficient. This assumes that the right-hand values of the constraint rows are non-negative (which is the convention).

For example, when attempting to maximise x in the constraint row $-2 x+3 y+s_{1}+s_{2}=12$, there is no upper limit to the possible value of x, as another slack variable (s_{3} say) could always be created, so that $-2 x+3 y+s_{1}+s_{2}+s_{3}=12$, with x being large, $y=s_{1}=s_{2}=0$, and s_{3} being large. Thus, this
particular constraint row places no restriction on the size of x, and therefore doesn't need to be considered when carrying out the Ratio test.
(5) After each pass of the Simplex method, the solution so far will correspond to a vertex of the feasible region - in the case of a graphical solution where there are only two variables (usually $x \& y$). The initial position (where $x=0, y=0$) corresponds to the Origin.
[Note that, having maximised one of the variables $x, y, \ldots, s_{1}, s_{2}, \ldots$, there is nothing to stop that variable being reduced in a subsequent pass of the method. (Consider what happens when we move from one vertex of the feasible region to another.)]
(6) Two-Stage Simplex

A problem occurs where there are \geq constraints, because the usual starting point for the Simplex method - where $x=0, y=0$ etc - cannot be applied (eg if $x+2 y-s_{1}=4$, then setting $x=0, y=0$ would mean that s_{1} would have to equal -4 ; but the surplus variable s_{1} is required to be non-negative). We get round this by introducing an artificial variable; $x+2 y-s_{1}+a_{1}=4$ for the above example. This allows an initial solution of $x=0, y=0, s_{1}=0, a_{1}=4$, and we hope to be able to minimise
a_{1}, so that - in the process - $x \& y$ move into the feasible region.
(7) Rather illogically, for the $1^{\text {st }}$ stage of the Two-Stage Simplex method, where $A\left(=a_{1}+a_{2}+\cdots\right)$ has to be minimised, it is conventional to achieve this by maximising a variable that has a positive coefficient (whereas, when it comes to minimising P, the convention is to maximise $-P$, and then maximise a variable that has a negative coefficient).
(8) In order to be able to apply the Simplex method, the righthand sides of the constraint rows need to be non-negative. (Only the Objective row may have a negative value on the right-hand side.)

A constraint such as $3 x+2 y-z \geq-2$ can be rewritten as $-3 x-2 y+z \leq 2$ (which also has the advantage that it is a standard \leq inequality). However, a constraint such as
$3 x+2 y-z \leq-2$ would have to be rewritten as
$-3 x-2 y+z \geq 2$, and then the Two-stage Simplex method would need to be employed.
(9) Constraints that are equalities (eg $x-2 y=5$) can be dealt with by replacing them with two inequalities (eg $x-2 y \leq 5$ and $x-2 y \geq 5$. The Two-stage Simplex method is then needed, in
order to be able to cope with the \geq inequality.

