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Note: Unless stated otherwise, it is assumed that any numbers 

referred to (such as 𝑎 and 𝑏) are integers. 

 

(A) Notation 

(1) 𝑎|𝑏 ∶ 𝑎 divides 𝑏  (𝑎 ∤ 𝑏 : 𝑎 doesn't divide 𝑏) 

(2) gcd(𝑎, 𝑏): greatest common divisor (or highest common 

factor) of 𝑎 and 𝑏 

(3) If 𝑎 and 𝑏  share no prime factors, then they are said to be 

'relatively prime' or 'co-prime' (and gcd(𝑎, 𝑏) = 1) 

(4) If we divide 𝑏 into 𝑎 and obtain 𝑎 = 𝑞𝑏 + 𝑟, then: 

𝑎 is the dividend 

𝑏 is the divisor 

𝑞 is the quotient 
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𝑟 is the remainder 

(5) ∃∶ there exists 

       ∀∶ for all 

 

(B) Divisibility tests 

(1) A number is divisible by 3 if the sum of its digits is divisible by 

3. 

(2) A number is divisible by 4 if the number formed by its last two 

digits is divisible by 4. 

(3) A number is divisible by 9 if the sum of its digits is divisible by 

9. 

(4) The number with digits  𝑎𝑏𝑐𝑑 … 𝑧 is divisible by 11 if 

𝑎 − 𝑏 + 𝑐 − 𝑑 + ⋯ − 𝑧  is divisible by 11 

 

(5) Examples:  

(a) 1358016 = 11 × 123456 

and 1 − 3 + 5 − 8 + 0 − 1 + 6 = 0 

(b) 9182736453 = 11 × 834794223  

and  9 − 1 + 8 − 2 + 7 − 3 + 6 − 4 + 5 − 3 = 22 

 

(C) Euclidean algorithm 

(1.1) Division theorem (or 'algorithm') 

This states that, if 𝑎 & 𝑏 are integers, with 𝑏 ≠ 0, then there is a 

unique pair of integers 𝑞 & 𝑟 such that  
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𝑎 = 𝑞𝑏 + 𝑟, where 0 ≤ 𝑟 < |𝑏| 

 

(1.2) Examples 

𝑎 = 24, 𝑏 = 40 ⇒ 24 = 0(40) + 24  

𝑎 = 24, 𝑏 = 15 ⇒ 24 = 1(15) + 9  

𝑎 = 24, 𝑏 = −15 ⇒ 24 = (−1)(−15) + 9  

𝑎 = 24, 𝑏 = −40 ⇒ 24 = 0(−40) + 24  

𝑎 = −24, 𝑏 = 40 ⇒ −24 = (−1)(40) + 16  

𝑎 = −24, 𝑏 = 15 ⇒ −24 = (−2)(15) + 6  

𝑎 = −24, 𝑏 = −15 ⇒ −24 = (2)(−15) + 6  

𝑎 = −24, 𝑏 = −40 ⇒ −24 = (1)(−40) + 16  

 

Note: If 𝑎 = 232 & 𝑏 = 11, then 232 = 21 × 11 + 1, 

but if  𝑎 = −232 & 𝑏 = 11, then −232 = −22 × 11 + 10 

 

(2) Theorem (A): If 𝑐 divides 𝑎 & 𝑏, then 𝑐 divides 𝑎𝑢 + 𝑏𝑣, for all 

integers 𝑢 & 𝑣 

 

(3) Lemma (B): If 𝑎 = 𝑞𝑏 + 𝑟, then  gcd(𝑎, 𝑏) = gcd (𝑏, 𝑟) 

Proof 

By the theorem in (2), a common divisor of  𝑎 & 𝑏 is a divisor of 

𝑟 = 𝑎 − 𝑞𝑏, and is therefore a common divisor of  𝑏 & 𝑟. 

Also, a common divisor of  𝑏 & 𝑟 is a divisor of 𝑎 = 𝑞𝑏 + 𝑟,  and is 

therefore a common divisor of  𝑎 & 𝑏. 
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Thus, the common divisors of 𝑎 & 𝑏  are the same as the common 

divisors of  𝑏 & 𝑟, and hence gcd(𝑎, 𝑏) = gcd(𝑏, 𝑟). 

Alternative Method: See STEP/Pure Exercises/Integers Q7 

 

(4.1) Euclidean algorithm 

This applies the lemma in (3) repeatedly.  

Without loss of generality, we need only consider gcd(𝑎, 𝑏), where 

𝑎 & 𝑏 are positive integers, and 𝑎 > 𝑏  

[If 𝑎 (for example) is zero, then gcd(𝑎, 𝑏) = 𝑏; 

where either 𝑎 or 𝑏 is negative (or both are), then 

gcd(𝑎, 𝑏) = gcd (|𝑎|, |𝑏|); 

if 𝑎 = 𝑏, then gcd(𝑎, 𝑏) = 𝑎] 

 

(4.2) Example:  Find gcd(90, 84) 

90 = 1(84) + 6  

84 = 14(6)  

So  gcd(90, 84 ) = gcd(84, 6) = 6 

[Note that this is quicker than writing 90 = 2 × 32 × 5 

and 84 = 22 × 3 × 7, and selecting the lowest powers of the prime 

factors: 2 × 3, and also quicker than comparing the multiples of 

90 and 84.] 

Note: A related result (that can be used in algorithms) is: 

gcd(𝑎, 𝑏) = gcd (𝑎 − 𝑏, 𝑏) , where 𝑎 > 𝑏. 
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(5.1) Bezout's identity: If 𝑎 and 𝑏 are non-zero integers, then 

there exist integers 𝑝 & 𝑞 such that gcd(𝑎, 𝑏) = 𝑝𝑎 + 𝑞𝑏 

The Euclidean algorithm can be used to find 𝑝 & 𝑞. 

(5.2) Example: Let 𝑎 = 84 & 𝑏 = 30 

Then  84 = 2(30) + 24 

30 = 1(24) + 6  

24 = 4(6)  

so that gcd(84, 30) = 6 

and, working backwards in the algorithm, 

6 = 30 − 1(24)  

= 30 − 1(84 − 2(30))  

= 3(30) − 1(84)  

ie 6 = 3(30) + (−1)(84) 

 

(6) gcd(𝑎, 𝑏) is the smallest positive integer that can be written as 

a linear combination of 𝑎 and 𝑏 (Result C) 

Proof 

Suppose that 𝐷 = 𝑝𝑎 + 𝑞𝑏, where 𝐷 < 𝑑 = gcd (𝑎, 𝑏) 

Then 𝑑|𝑎 & 𝑑|𝑏, so that 𝑑|𝐷, which contradicts 𝐷 < 𝑑. 

 

(7) 𝑎 and 𝑏 are co-prime ⇔ ∃ integers such that 𝑎𝑥 + 𝑏𝑦 = 1 

(Result D) 

Proof  

(i) Bezout's identity means that  
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𝑎 and 𝑏 are co-prime ⇒ ∃ integers such that 𝑎𝑥 + 𝑏𝑦 = 1 

(ii) If 𝑎𝑥 + 𝑏𝑦 = 1, then 𝑎 and 𝑏 are co-prime (if gcd(𝑎, 𝑏) = 𝑑 ≠

1, then 𝑑|1, which isn't possible, so there is a contradiction) 

 

(D) Modular arithmetic  

(1.1) Congruence 

𝑎 is said to be congruent to 𝑏 modulo 𝑚 if 𝑎 and 𝑏 leave the same 

remainder when they are divided by 𝑚 (𝑚 is usually positive) 

This is written  𝑎 ≡ 𝑏 (mod 𝑚) 

(sometimes referred to as modular congruence) 

[𝑚 is referred to as the modulus] 

 

(1.2) Examples 

9 ≡ 2 (mod 7)  

9 ≡ 16 (mod 7)  

 

(2) 𝑎 ≡ 𝑏 (mod 𝑚) if 𝑚|(𝑎 − 𝑏) (Result E) 

 

The least residue of 𝑎 (mod 𝑚) is the value 𝑏 such that 𝑎 ≡ 𝑏 

(mod 𝑚), and 0 ≤ 𝑏 < 𝑚. The least residue of 𝑎 is just the 

remainder when 𝑎 is divided by 𝑚. 

 

(3) Properties of congruences 

(i) 𝑎 ≡ 0 (mod 𝑚) ⇔ 𝑚|𝑎 
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(ii) 𝑎 ≡ 𝑎 (mod 𝑚) 

(iii) If 𝑎 ≡ 𝑏 (mod 𝑚), then 𝑏 ≡ 𝑎 (mod 𝑚) 

(iv) If 𝑎 ≡ 𝑏 (mod 𝑚), and 𝑏 ≡ 𝑐 (mod 𝑚), then 𝑎 ≡ 𝑐 (mod 𝑚) 

 

(4.1) Rules of modular arithmetic 

Suppose that 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚), and 𝑚, 𝑛 > 0. 

(i) 𝑘𝑎 ≡ 𝑘𝑏 (mod 𝑚) 

(ii) 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑚)  and  𝑎 − 𝑐 ≡ 𝑏 − 𝑑 (mod 𝑚) 

(iii) 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑚) 

Proof 

rtp (result to prove): 𝑚|(𝑎𝑐 − 𝑏𝑑) 

𝑎 ≡ 𝑏 (mod 𝑚) ⇒ 𝑎 − 𝑏 = 𝑝𝑚  

and 𝑐 ≡ 𝑑 (mod 𝑚) ⇒ 𝑐 − 𝑑 = 𝑞𝑚 

So  𝑎𝑐 − 𝑏𝑑 = 𝑎𝑐 − (𝑎 − 𝑝𝑚)(𝑐 − 𝑞𝑚) = 𝑚(𝑝𝑐 + 𝑞𝑎 − 𝑝𝑞𝑚) 

 

(iv) 𝑎𝑛 ≡ 𝑏𝑛 (mod 𝑚)  (this follows from (iii)) 

 

(4.2) Example: Find the remainder when 2635 is divided by 9 

Solution 

263 = 270 − 7 ≡ −7 ≡ 2 (mod 9)  

Hence  2635 ≡ 25 = 32 ≡ 5 (mod 9) 

 

(4.3) Example: Find the last digit of  52342 
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Solution 

523 ≡ 3 (mod 10); hence 52342 ≡ 342 = (32)21 

Then, as 32 ≡ −1 (mod 10), (32)21 ≡ (−1)21 = −1. 

So  52342 ≡ −1 ≡ 9 (mod 10), and this is the last digit 

(4.4) Example: Find the remainder when 16241 is divided by 7 

Solution 

16 ≡ 2 (mod 7), and so 16241 ≡ 2241 = 23×80+1 = 2(23)80 

and 23 ≡ 1, so that  (23)80 ≡ 180 = 1, 

and then 2(23)80 ≡ 2 

 

(E) Congruence equations 

(1) The following is a standard result (Result F): 

Consider the equation 𝑎𝑥 ≡ 𝑏  (mod 𝑚)   (*) 

with 𝑎, 𝑏, 𝑚 ∈ ℤ and 𝑚 > 0 

Suppose that gcd(𝑎, 𝑚) = 𝑑. 

(i) If  𝑑 ∤ 𝑏, then (*) has no solutions. 

(ii) If 𝑑|𝑏, then (*) has 𝑑 solutions (mod 𝑚) 

 

Proof of (i): Suppose that (*) has a solution, so that 

𝑎𝑥 − 𝑏 = 𝑘𝑚 for some 𝑥 & 𝑘 

Then 𝑏 = 𝑎𝑥 − 𝑘𝑚 

As 𝑑|𝑎 and 𝑑|𝑚, it follows that 𝑑|𝑏, which contradicts the 

assumption that 𝑑 ∤ 𝑏. 
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To explore (ii), consider the following example. 

Example: To find solutions of  12𝑥 ≡ 18 (mod 30) 

Here gcd(12, 30) = 6 and 6|18, so (from the result above) we 

expect there to be 6 solutions (mod 30). 

First of all, we can establish that there will be at least one 

solution: 

We want to find 𝑥 & 𝑘 such that 12𝑥 − 18 = 30𝑘 

Dividing through by gcd(12, 30) = 6, this gives 

2𝑥 − 3 = 5𝑘 , and gcd(2, 5) = 1 

We can now use the earlier result that, if  𝑝 and q are co-prime, 

then ∃ integers such that 𝑝𝑋 + 𝑞𝑌 = 1.  

In this case, we can find 𝑋 & 𝑌 such that 2𝑋 + 5𝑌 = 1. 

Then our equation  2𝑥 − 3 = 5𝑘  can be rewritten as 2𝑥 − 5𝑘 = 3, 

and 2𝑋 + 5𝑌 = 1 can be rewritten as 2(3𝑋) − 5(−3𝑌) = 3, 

giving 𝑥 = 3𝑋 and 𝑘 = −3𝑌, and so at least one solution exists. 

We can now see how there will be 𝒅 solutions (mod 𝒎): 

Suppose that we have found 𝑥 & 𝑘 such that 12𝑥 − 18 = 30𝑘 

Then consider another solution 𝑥′ = 𝑥 + 𝜆, so that 

12(𝑥 + 𝜆) − 18 = 30𝑘′  

As 12𝑥 − 18 = 30𝑘, this means that 12𝜆 ≡ 0 (mod 30). 

This holds for the integer 𝜆 =
30

6
= 5, as 12 (

30

6
) = (

12

6
)(30), but 

no smaller integer, as 6 is the largest number that is a divisor of 

both 30 and 12 (making both 
30

6
 and 

12

6
 integers). 
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It also holds for multiples of 5, from 0 up to 6 − 1, with 

subsequent multiples repeating the cycle (as  6(
30

6
) ≡ 0(

30

6
) (mod 

30), 7 (
30

6
) = 30 + (

30

6
) ≡ 1 (

30

6
) etc). 

Thus there are 6 solutions (mod 30), and  𝑑 (mod 𝑚) in the 

general case. 

 

(2.1) Multiplicative inverses  

A multiplicative inverse of 𝑎 (mod 𝑚) is defined to be the 

integer 𝑝 that satisfies 𝑎𝑝 ≡ 1 (mod 𝑚), where we can assume 

that gcd(𝑎, 𝑚) = 1. 

[Suppose that gcd(𝑎, 𝑚) = 𝑑. Then 𝑎𝑝 ≡ 1 (mod 𝑚)⇒ 

𝑎𝑝 − 1 = 𝜆𝑚 ⇒ 𝑎𝑝 − 𝜆𝑚 = 1, and as 𝑑|𝑎 & 𝑑|𝑚, it follows that 

𝑑|1, which means that 𝑑 = 1, as 𝑑 > 0.]  

By Bezout's identity, as gcd(𝑎, 𝑚) = 1, there exist integers 𝑝 & 𝑞 

such that 𝑎𝑝 + 𝑚𝑞 = 1, and then 𝑎𝑝 ≡ 1 (mod 𝑚). 

As already seen, the Euclidean algorithm can be used to find 

𝑝 & 𝑞. 

 

(2.2) Example: Find a positive multiplicative inverse of 5 (mod 6). 

We have to find an integer 𝑝 that satisfies 5𝑝 ≡ 1 (mod 6). 

To do this we find 𝑝 & 𝑞 such that 5𝑝 + 6𝑞 = 1: 

Applying the Euclidean algorithm, 

6 = 1(5) + 1  

5 = 5(1)  

so that 1 = 6 − 1(5); ie 5(−1) + 6(1) = 1 
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and so 𝑝 = −1 

Thus 5(−1) ≡ 1 (mod 6), and hence 5(−1) + 5(6) ≡ 1 (mod 6), 

so that 5(5) ≡ 1 (mod 6); ie the required multiplicative inverse is 

5. 

 

(3) To solve the congruence equation 𝑎𝑥 ≡ 𝑏 (mod 𝑚) (assuming 

that gcd(𝑎, 𝑚) |𝑏), multiply both sides by the multiplicative 

inverse 𝑝 of 𝑎 (mod 𝑚), to give 𝑎𝑝𝑥 ≡ 𝑏𝑝 (mod 𝑚) 

Then 𝑎𝑝 ≡ 1 ⇒  𝑎𝑝𝑥 ≡ 𝑥, so that 𝑥 ≡ 𝑏𝑝. (Result G) 

 

(4.1) Cancelling in modular arithmetic 

If 𝑘𝑎 ≡ 𝑘𝑏 (mod 𝑚) and 𝑔𝑐𝑑(𝑘, 𝑚) = 𝑑, 

then  𝑎 ≡ 𝑏 (mod 
𝑚

𝑑
)   (Result H) 

Proof: 𝑘𝑎 ≡ 𝑘𝑏 (mod 𝑚)⇒ 𝑚|𝑘(𝑎 − 𝑏) 

Then, as 𝑔𝑐𝑑(𝑘, 𝑚) = 𝑑, the prime factors of 𝑚 that make up 𝑑 

will divide 𝑘, but will not necessarily divide (𝑎 − 𝑏). However, the 

remaining prime factors of 𝑚 must divide (𝑎 − 𝑏), as they don't 

divide 𝑘, and so it follows that 
𝑚

𝑑
|(𝑎 − 𝑏); ie  𝑎 ≡ 𝑏 (mod 

𝑚

𝑑
) 

 

(4.2) Example: Solve the congruence equation 3𝑥 ≡ 12 (mod 6) 

As gcd(3, 6) = 3, we can write 𝑥 ≡ 4 (mod 2), so that 

𝑥 ≡ 0 (mod 2). 

 

(4.3) Example: Solve the congruence equation 18𝑥 ≡ 12 (mod 40) 
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As  gcd(6, 40) = 2, we can write  3𝑥 ≡ 2 (mod 
40

2
); 

ie  3𝑥 ≡ 2 (mod 20). 

Note that gcd(𝑎, 𝑚) = 1 (writing the congruence equation in the 

form 𝑎𝑥 ≡ 𝑏 (mod 𝑚)). Had this not been the case, there would 

only have been a solution if gcd(𝑎, 𝑚)|𝑏, and then it would have 

been possible to cancel the equation further, as gcd(𝑎, 𝑚) would 

divide 𝑎, 𝑏 & 𝑚. 

We can now find the multiplicative inverse of 3; ie the 𝑝 that 

satisfies 3𝑝 ≡ 1 (mod 20). 

Using Bezout's identity, we find 𝑝 & 𝑞 such that 3𝑝 + 20𝑞 = 1. 

Applying the Euclidean algorithm, 

20 = 6(3) + 2  

3 = 1(2) + 1  

2 = 2(1)  

so that  1 = 3 − 1(2) = 3 − 1(20 − 6(3)) = 3(7) + 20(−1) 

and so 𝑝 = 7 

Thus  3(7) ≡ 1 (mod 20). 

Then, to tackle 3𝑥 ≡ 2 (mod 20), we multiply both sides by the 

multiplicative inverse, to give 7(3𝑥) ≡ 14 (mod 20), and then by 

the earlier result this gives 𝑥 ≡ 14 (mod 20). 

As gcd(3, 20) = 1, this is the only solution, by result (F). 

 

(F) Fermat's Little theorem 

(1) This states that, if 𝑝 is a prime number and 𝑎 is any integer, 

then 𝑎𝑝 ≡ 𝑎 (mod 𝑝). 
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(2) If 𝑝 isn't a factor of 𝑎 (so that gcd(𝑎, 𝑝) = 1), 𝑎 can be 

cancelled from both sides, with no effect on the modulus, to give: 

𝑎𝑝−1 ≡ 1 (mod 𝑝). [Result I] 

 

(3) It follows that  𝑎𝑝−2. 𝑎 ≡ 1 (mod 𝑝), so that (when 𝑝 isn't a 

factor of 𝑎) 𝑎𝑝−2 is a multiplicative inverse of 𝑎 (mod 𝑝). 

[Result J] 

 

(4) Example: Find the remainder when 2403 is divided by 13. 

Solution: By Fermat's Little theorem, 212 ≡ 1 (mod 13). 

Noting that 403 = 33 × 12 + 7, 

(212)33 ≡ 133 = 1  

⇒ 2403 = 27(212)33 ≡ 27 = 128 = 130 − 2 ≡ −2 ≡ 11 (mod 13) 

 

(5) If 𝑎𝑥 ≡ 𝑏 (mod 𝑝), where 𝑝 is prime, and if 𝑝 isn't a factor of 𝑎,  

then, by Result F, there is one solution for 𝑥. 

Then  𝑎𝑝−1𝑥 ≡ 𝑎𝑝−2𝑏 (mod 𝑝),  

and as 𝑎𝑝−1 ≡ 1,  it follows that 𝑎𝑝−1𝑥 ≡ 𝑥, 

so that  𝑥 ≡ 𝑎𝑝−2𝑏 (mod 𝑝)  [Result K] 

  

(6) Example: Solve 5𝑥 ≡ 8 (mod 17) 

Solution 
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By Results J and K, 515 is a multiplicative inverse of  5 (mod 17) 

and 𝑥 ≡ 515 × 8 (mod 17) 

Now, 52 = 25 ≡ 8 (mod 17), 

so that  54 ≡ 82 = 64 = 68 − 4 ≡ −4 ≡ 13 (mod 17), 

and then 

56 = 54 × 52 ≡ 13 × 8 = 104 = 6 × 17 + 2 ≡ 2 (mod 17), 

so that  512 ≡ 22 = 4 (mod 17), 

and  515 × 8 = 512 × 52 × (5 × 8) ≡ 4 × 8 × 6 = 192 (mod 17), 

and hence  𝑥 ≡ 515 × 8 ≡ 192 = 170 + 17 + 5 ≡ 5 (mod 17). 

 

(7) Example: Find the remainder when 121000 is divided by 7. 

Solution 

By Fermat's Little theorem, 126 ≡ 1 (mod 7), as 12 is not divisible 

by 7. 

Then, as 1000 = (6 × 166) + 4, 

12996 = (126)166 ≡ 1166 = 1 (mod 7). 

Also, 122 = 144 ≡ 4 (mod 7) 

and so 124 ≡ 42 = 16 ≡ 2 (mod 7). 

Hence  121000 = 12996 × 124 ≡ 1 × 2 = 2 (mod 7). 

 

 

Appendix 1: Summary of results (see also Appendix 2) 

(1) Division theorem (or 'algorithm'): 
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If 𝑎 & 𝑏 are integers, with 𝑏 ≠ 0, then there is a unique pair of 

integers 𝑞 & 𝑟 such that  𝑎 = 𝑞𝑏 + 𝑟, where 0 ≤ 𝑟 < |𝑏| 

 

(2) (Theorem A) If 𝑐 divides 𝑎 & 𝑏, then 𝑐 divides 𝑎𝑢 + 𝑏𝑣, for all 

integers 𝑢 & 𝑣 

 

(3) (Lemma B) If 𝑎 = 𝑞𝑏 + 𝑟, then  gcd(𝑎, 𝑏) = gcd (𝑏, 𝑟) 

 

(4) Euclidean algorithm: The application of the lemma in (3) to 

produce  gcd(𝑎, 𝑏). 

 

(5) Bezout's identity: If 𝑎 and 𝑏 are non-zero integers, then there 

exist integers 𝑝 & 𝑞 such that gcd(𝑎, 𝑏) = 𝑝𝑎 + 𝑞𝑏 

(The Euclidean algorithm can be used to find 𝑝 & 𝑞. ) 

 

(6) (Result C) gcd(𝑎, 𝑏) is the smallest positive integer that can be 

written as a linear combination of 𝑎 and 𝑏 

 

(7)  (Result D) 𝑎 and 𝑏 are co-prime ⇔ ∃ integers such that 𝑎𝑥 +

𝑏𝑦 = 1 

 

(8) (Result E) 𝑎 ≡ 𝑏 (mod 𝑚) if 𝑚|(𝑎 − 𝑏) 

 

(9) (Result F) Consider the equation 𝑎𝑥 ≡ 𝑏  (mod 𝑚)   (*) 

with 𝑎, 𝑏, 𝑚 ∈ ℤ and 𝑚 > 0 
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Suppose that gcd(𝑎, 𝑚) = 𝑑. 

(i) If  𝑑 ∤ 𝑏, then (*) has no solutions. 

(ii) If 𝑑|𝑏, then (*) has 𝑑 solutions (mod 𝑚) 

 

(10) (Result K) If 𝑎𝑥 ≡ 𝑏 (mod 𝑝), where 𝑝 is prime, and if 𝑝 isn't 

a factor of 𝑎, then 𝑥 ≡ 𝑎𝑝−2𝑏 (mod 𝑝) 

 

Appendix 2: Summary of congruence devices 

(1) eg 72 = 49 ≡ 1 (mod 12), so 796 = (72)48 ≡ 148 = 1 (mod 12) 

(using a power of 7 that is congruent to 1) 

Congruence to −1 can also be useful. 

 

(2) Problems involving the last digit of a number can usually be 

tackled by considering congruence mod 10. 

Using the device in (1), where we look for congruence to 1 or 

−1 (mod 10), note the following: 

32 = 9 ≡ −1 (mod 10), so 34𝑛 ≡ (−1)2𝑛 = 1 (mod 10)  

72 = 49 ≡ −1 (mod 10), so 74𝑛 ≡ (−1)2𝑛 = 1 (mod 10)  

11 ≡ 1 (mod 10), so 11𝑛 ≡ 1 (mod 10)  

[Note that powers of even numbers will never be congruent to 1 

or −1 (mod 10).] 

 

(3) If 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚), and 𝑚, 𝑛 > 0. 

(i) 𝑘𝑎 ≡ 𝑘𝑏 (mod 𝑚) 
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(ii) 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑚)  and  𝑎 − 𝑐 ≡ 𝑏 − 𝑑 (mod 𝑚) 

(iii) 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑚) 

Special case: If 𝑏 ≡ 𝑐 (mod m), then 𝑎𝑏 ≡ 𝑎𝑐 (mod m) 

(iv) 𝑎𝑛 ≡ 𝑏𝑛 (mod 𝑚)  (this follows from (iii)) 

 

(4) A multiplicative inverse 𝑝 of 𝑎 (mod 𝑚) [so that 𝑎𝑝 ≡ 1 (mod 

𝑚), where we can assume that gcd(𝑎, 𝑚) = 1] can be found by 

applying the Euclidean algorithm to find 𝑝 & 𝑞 such that 𝑎𝑝 +

𝑚𝑞 = 1.  

 

(5) (Result G) To solve the congruence equation 𝑎𝑥 ≡ 𝑏 (mod 𝑚) 

(assuming that gcd(𝑎, 𝑚) |𝑏), multiply both sides by the 

multiplicative inverse 𝑝 of 𝑎 (mod 𝑚), to give 𝑎𝑝𝑥 ≡ 𝑏𝑝 (mod 𝑚) 

Then 𝑎𝑝 ≡ 1 ⇒  𝑎𝑝𝑥 ≡ 𝑥, so that 𝑥 ≡ 𝑏𝑝. 

 

(6) (Result H)  If 𝑘𝑎 ≡ 𝑘𝑏 (mod 𝑚) and 𝑔𝑐𝑑(𝑘, 𝑚) = 𝑑, 

then  𝑎 ≡ 𝑏 (mod 
𝑚

𝑑
) 

 

(7) Fermat's Little theorem: If 𝑝 is a prime number and 𝑎 is any 

integer, then 𝑎𝑝 ≡ 𝑎 (mod 𝑝). 

 

(8) If 𝑝 isn't a factor of 𝑎,  𝑎𝑝−1 ≡ 1 (mod 𝑝) [Result I]. 

 

(9) When 𝑝 isn't a factor of 𝑎, 𝑎𝑝−2 is a multiplicative inverse of 𝑎  
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[Result J]. 


