Rational Functions (5 pages; 12/7/24)
(1) Example A: Sketch the curve $y=\frac{x^{2}+1}{x^{2}-3 x}$, noting any stationary points.
(i) There are no solutions when $x=0$ or $y=0$, so the curve doesn't cross the x or y axes.
(ii) There are vertical asymptotes where $x^{2}-3 x=0$;
ie at $x=0$ and $x=3$
(iii) $\frac{x^{2}+1}{x^{2}-3 x}=\frac{1+1 / x^{2}}{1-3 / x} \rightarrow \frac{1}{1}=1$ as $x \rightarrow \pm \infty$;
ie the horizontal asymptote is $y=1$
[Note that $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow \infty} f(x)}{\lim _{x \rightarrow \infty} g(x)}$ only when $\lim _{x \rightarrow \infty} f(x) \& \lim _{x \rightarrow \infty} g(x)$
are constants. [See "A course of Pure Mathematics" by G.H. Hardy (CUP 1933): Theorem IV of section 66]

Example where $\frac{\lim f(x)}{\lim g(x)} \neq \lim \frac{f(x)}{g(x)}$:
$y=\frac{6 x^{2}-5 x+3}{3 x-1}=\cdots=2 x-1+\frac{2}{3 x-1} \rightarrow 2 x-1$
[taking $f(x)=\frac{2}{3 x-1}$ and $g(x)=1$, and noting that $\lim _{x \rightarrow \infty} f(x)=0$]
but $\frac{6 x-5+3 / x}{3-1 / x}$ wrongly suggests a limit of $\left.\frac{6 x-5}{3}=2 x-\frac{5}{3}\right]$
(iv) Behaviour at the vertical asymptotes

Writing $y=\frac{x^{2}+1}{x(x-3)}$,
$x=-\delta \Rightarrow \frac{+}{(-)(-)}>0 \& x=\delta \Rightarrow \frac{+}{(+)(-)}<0$
and $x=3-\delta \Rightarrow \frac{+}{+(-)}<0 \& x=3+\delta \Rightarrow \frac{+}{+(+)}>0$
(v) Behaviour at the horizontal asymptote

For large x, say $x=100: y=1.03$
For large negative x, say $x=-100: y=0.97$
Thus the curve approaches $y=1$ from above as $x \rightarrow \infty$ and from below as $x \rightarrow-\infty$
(vi) To find the stationary points, consider the values of k for which solutions exist for $\frac{x^{2}+1}{x^{2}-3 x}=k$;
ie $x^{2}(1-k)+3 k x+1=0$
Solutions exist when $(3 k)^{2}-4(1-k) \geq 0$
ie $9 k^{2}+4 k-4 \geq 0$
The roots of $9 k^{2}+4 k-4=0$ are $k=\frac{-4 \pm \sqrt{16+144}}{18}=\frac{-2 \pm 2 \sqrt{10}}{9}$
$=0.48051 \&-0.92495$
Thus the curve exists for values of k outside the range -0.92495 to 0.48051
(vii) To find the x coordinates of the stationary points, from (*): $x=\frac{-3 k}{2(1-k)}=0.72076 \&-1.38745$

Thus the stationary points are $(-1.39,0.48) \&(0.72,-0.92)$

(2) Example B: Sketch the graph of $y=\frac{(x-1)(x+1)^{2}}{x^{2}(2 x-3)}$
(i) $y=\frac{(x-1)(x+1)^{2}}{x^{2}(2 x-3)}=0$ when $x=1$ or -1 (repeated root)
(ii) Vertical asymptotes: $x=0 \& x=\frac{3}{2}$
(iii) Horizontal asymptote: $\lim _{x \rightarrow \infty} \frac{(x-1)(x+1)^{2}}{x^{2}(2 x-3)}=\lim _{x \rightarrow \infty} \frac{\left(x^{2}-1\right)(x+1)}{2 x^{3}-3 x^{2}}$
$=\lim _{x \rightarrow \infty} \frac{x^{3}+x^{2}-x-1}{2 x^{3}-3 x^{2}}=\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}-\frac{1}{x^{2}}-\frac{1}{x^{3}}}{2-\frac{3}{x}}=\frac{1}{2}$; ie $y=\frac{1}{2}$
(iv) Behaviour at the vertical asymptotes

As $y=\frac{(x-1)(x+1)^{2}}{x^{2}(2 x-3)}, x=\frac{3}{2}+\delta \Rightarrow y$ is $\frac{(+)(+)}{(+)(+)}=(+)$
For $x=\frac{3}{2}-\delta$, only the sign of $2 x-3$ is going to change, so that y is (-).

However, note that, because of the x^{2} term in $\frac{(x-1)(x+1)^{2}}{x^{2}(2 x-3)}$,
$x=0+\delta$ and $x=0-\delta$ are both $\frac{(-)(+)}{(+)(-)}=(+)$
(v) Behaviour at the horizontal asymptote

When $x=100, y=\frac{99(101)^{2}}{100^{2}(197)}=0.513>\frac{1}{2}$
When $x=-100, y=\frac{(-101)(-99)^{2}}{100^{2}(-203)}=0.488<\frac{1}{2}$
(vi) It is possible to investigate when the graph crosses $y=\frac{1}{2}$, as follows:
$\frac{(x-1)(x+1)^{2}}{x^{2}(2 x-3)}=\frac{1}{2} \Rightarrow 2(x-1)\left(x^{2}+2 x+1\right)=2 x^{3}-3 x^{2}$
$\Rightarrow 2 x^{3}+x^{2}(4-2)+x(2-4)-2=2 x^{3}-3 x^{2}$
$\Rightarrow 5 x^{2}-2 x-2=0$
$\Rightarrow x=\frac{2 \pm \sqrt{4-4(5)(-2)}}{10}=\frac{2 \pm \sqrt{44}}{10}=\frac{1 \pm \sqrt{11}}{5}$
ie the curve crosses $y=\frac{1}{2}$ in the interval $\left(0, \frac{1+\sqrt{16}}{5}\right)$; ie $(0,1)$
and in the interval $\left(\frac{1-\sqrt{16}}{5}, 0\right)$; ie $\left(-\frac{3}{5}, 0\right)$
and to the left of $\frac{1-3}{5}=-2 / 5$
[Note: The fact that $y=\frac{1}{2}$ is the horizontal asymptote ensures that the terms in x^{3} cancel from both sides of $\left({ }^{*}\right)$, but had there been any terms in x^{4} we would have been left with a cubic (ie generally not solvable by simple methods).]
(vii) Graph:

