STEP 2016, P1, Q9 - Solution (5 pages; 3/5/24)

1 $^{\text {st }}$ Part

The following force diagram applies for the rod:

It is clear* that, were the wall and the rail to be smooth, then the rod would slide down the wall, so that the frictional forces act as shown - opposing attempted motion.
*Alternatively, we can take moments about P to show that there would be a net anti-clockwise moment, were there to be no frictional forces.

N2L along the rod: $N \sin \theta+\lambda R+\mu N \cos \theta=m g \cos \theta$
Perp. to the rod: $R+\mu N \sin \theta=N \cos \theta+m g \sin \theta(2)$
Taking moments about $\mathrm{A}: m g \sin \theta \cdot a=R \cdot \frac{d}{\sin \theta}$ (3)
[Note that we are introducing the mass of the rod, but that the problem will not be dependent on it.]

Using (3) to eliminate $m g($ or $m g \sin \theta)$,
(1) becomes $N \sin \theta+\lambda R+\mu N \cos \theta=\left(\frac{R d}{a \sin ^{2} \theta}\right) \cos \theta$
and (2) becomes $R+\mu N \sin \theta=N \cos \theta+\frac{R d}{a \sin \theta}\left(2^{\prime}\right)$
We can then use $\left(1^{\prime}\right) \&\left(2^{\prime}\right)$ to equate two expressions for $\frac{N}{R}$:
From (1'), $\frac{N}{R} \sin \theta+\lambda+\mu \frac{N}{R} \cos \theta=\frac{d \cos \theta}{a \sin ^{2} \theta}$,
so that $\frac{N}{R}=\frac{\frac{d \cos \theta}{a \sin { }^{2} \theta}-\lambda}{\sin \theta+\mu \cos \theta}$,
and from (2'), $1+\mu \frac{N}{R} \sin \theta=\frac{N}{R} \cos \theta+\frac{d}{a \sin \theta}$,
so that $\frac{N}{R}=\frac{\frac{d}{a \sin \theta}-1}{\mu \sin \theta-\cos \theta}$
Hence $\frac{\frac{d \cos \theta}{a \sin { }^{2} \theta}-\lambda}{\sin \theta+\mu \cos \theta}=\frac{\frac{d}{a \sin \theta}-1}{\mu \sin \theta-\cos \theta}$, so that
$\left(d \cos \theta-\lambda a \sin ^{2} \theta\right)(\mu \sin \theta-\cos \theta)$
$=\left(d \sin \theta-a \sin ^{2} \theta\right)(\sin \theta+\mu \cos \theta)$
Then, as the term $d \mu \cos \theta \sin \theta$ cancels from both sides,
$-d \cos ^{2} \theta-\lambda a \mu \sin ^{3} \theta+\lambda a \sin ^{2} \theta \cos \theta$
$=d \sin ^{2} \theta-a \sin ^{3} \theta-a \mu \sin ^{2} \theta \cos \theta$,
and so $d=a \sin ^{3} \theta+a \mu \sin ^{2} \theta \cos \theta-\lambda a \mu \sin ^{3} \theta+\lambda a \sin ^{2} \theta \cos \theta$, and hence $d \operatorname{cosec}^{2} \theta=a \sin \theta+a \mu \cos \theta-\lambda a \mu \sin \theta+\lambda a \cos \theta$
$=a(\cos \theta(\mu+\lambda)+\sin \theta(1-\lambda \mu))$, which gives the required relation

$2^{\text {nd }}$ Part

Clearly, in the extreme case of a very small value for d, it would not be possible to prevent the rod from rotating clockwise. For a larger value of d, it is not clear (without doing any calculations)
whether the rod would tend to rotate clockwise or anti-clockwise, in the absence of frictional forces. However, the question tells us that there is limiting equilibrium, and since d is now taking a smaller value than in the $1^{\text {st }}$ Part, this limiting equilibrium can only relate to a situation whether the frictional forces act down the wall and down the rod.
[In fact, as shown at the end, the rod has a tendency to rotate clockwise (in the absence of frictional forces) only when $d<\operatorname{asin}^{3} \theta$ (rather than $a \sin \theta$), although of course $a \sin ^{3} \theta<a \sin \theta$. So the question is arguably a bit misleading in implying that $d=a \sin \theta$ is some sort of critical point.]

N2L along the rod: $N \sin \theta-\lambda R-\mu N \cos \theta=m g \cos \theta$
Perp. to the rod: $R-\mu N \sin \theta=N \cos \theta+m g \sin \theta(2)$
Taking moments about A: $m g \sin \theta \cdot a=R \cdot \frac{d}{\sin \theta}$ (3)
Using (3) to eliminate $m g$ (or $m g \sin \theta$),
(1) becomes $N \sin \theta-\lambda R-\mu N \cos \theta=\left(\frac{R d}{a \sin ^{2} \theta}\right) \cos \theta$
and (2) becomes $R-\mu N \sin \theta=N \cos \theta+\frac{R d}{a \sin \theta}\left(2^{\prime}\right)$

We can then use $\left(1^{\prime}\right) \&\left(2^{\prime}\right)$ to equate two expressions for $\frac{N}{R}$:
From (1^{\prime}), $\frac{N}{R} \sin \theta-\lambda-\mu \frac{N}{R} \cos \theta=\frac{d \cos \theta}{a \sin ^{2} \theta}$,
so that $\frac{N}{R}=\frac{\frac{d \cos \theta}{\operatorname{asin}{ }^{2} \theta}+\lambda}{\sin \theta-\mu \cos \theta}$,
and from (2'), $1-\mu \frac{N}{R} \sin \theta=\frac{N}{R} \cos \theta+\frac{d}{a \sin \theta}$,
so that $\frac{N}{R}=\frac{1-\frac{d}{a \sin \theta}}{\mu \sin \theta+\cos \theta}$
Hence $\frac{\frac{d \cos \theta}{\frac{\sin 2}{}+\lambda}}{\sin \theta-\mu \cos \theta}=\frac{1-\frac{d}{\operatorname{asin} \theta}}{\mu \sin \theta+\cos \theta}$, so that
$\left(d \cos \theta+\lambda \operatorname{ain}^{2} \theta\right)(\mu \sin \theta+\cos \theta)$
$=\left(a \sin ^{2} \theta-d \sin \theta\right)(\sin \theta-\mu \cos \theta)$
Then, as the term $d \mu \cos \theta \sin \theta$ cancels from both sides,
$d \cos ^{2} \theta+\lambda a \mu \sin ^{3} \theta+\lambda a \sin ^{2} \theta \cos \theta$
$=a \sin ^{3} \theta-a \mu \sin ^{2} \theta \cos \theta-d \sin ^{2} \theta$,
and so $d=a \sin ^{3} \theta-a \mu \sin ^{2} \theta \cos \theta-\lambda a \mu \sin ^{3} \theta-\lambda a \sin ^{2} \theta \cos \theta$,
and hence $d \operatorname{cosec}^{2} \theta=a \sin \theta-a \mu \cos \theta-\lambda a \mu \sin \theta-\lambda a \cos \theta$
$=a(\sin \theta(1-\lambda \mu)-\cos \theta(\mu+\lambda))$

Investigation into the critical point when the rod first has a tendency to rotate clockwise (in the absence of frictional forces) [for the $2^{\text {nd }}$ Part]

From (1), (2) \& (3) [of the $1^{\text {st }}$ Part] with $\lambda=\mu=0$,
$N \sin \theta=m g \cos \theta, R=N \cos \theta+m g \sin \theta$
and $M(A)_{c w}=m g \sin \theta \cdot a-R \cdot \frac{d}{\sin \theta}$

So $R=(m g \cot \theta) \cos \theta+m g \sin \theta=\frac{m g}{\sin \theta}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$=\frac{m g}{\sin \theta}$, and hence $M(A)_{c w}=m g\left(a \sin \theta-\frac{d}{\sin ^{2} \theta}\right)$
Thus the critical point when $M(A)_{c w}=0$ is
$\operatorname{asin} \theta-\frac{d}{\sin ^{2} \theta}=0$; ie $d=a \sin ^{3} \theta$

