STEP 2022, P3, Q10 - Solution (4 pages; 12/6/24)

(i)

The tension in PB is $\frac{s_1W(PB-a)}{a}$ and similarly for PC. Resolving the forces on P horizontally: $\frac{s_1W(PB-a)}{a} \cdot cos\theta = \frac{s_2W(PC-a)}{a} \cdot sin\theta$ (1) And vertically: $\frac{s_1W(PB-a)}{a} \cdot sin\theta + \frac{s_2W(PC-a)}{a} \cdot cos\theta = W$ (2) Also $PB = 2acos\theta$ and $PC = 2asin\theta$ Substituting these into (1) & (2) gives: $s_1(2cos\theta - 1) \cdot cos\theta = s_2(2sin\theta - 1)sin\theta$ (1') $\& s_1(2cos\theta - 1) \cdot sin\theta + s_2(2sin\theta - 1)cos\theta = 1$ (2')

Writing $t_1 = s_1(2\cos\theta - 1) \& t_2 = s_2(2\sin\theta - 1)$,

$$t_1 \cos\theta - t_2 \sin\theta = 0 \ (1'')$$

& $t_1 sin\theta + t_2 cos\theta = 1$ (2")

Then $\binom{t_1}{t_2} = \frac{1}{\cos^2\theta + \sin^2\theta} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$= \binom{\sin\theta}{\cos\theta}$$

so that $s_1 = \frac{\sin\theta}{2\cos\theta - 1}$ and $s_2 = \frac{\cos\theta}{2\sin\theta - 1}$ (As $PB = 2a\cos\theta > a \& PC = 2a\sin\theta > a, 2\cos\theta - 1 > 0 \& 2\sin\theta - 1 > 0$)

(ii) 1st Part

The elastic potential energy in PB is $\frac{1}{2} \left(\frac{s_1 W}{a} \right) (PB - a)^2$ $=\frac{\sin\theta W(2a\cos\theta-a)^2}{2a(2\cos\theta-1)}=\frac{\sin\theta Wa(2\cos\theta-1)}{2}$ and for PC it is $\frac{\cos\theta W(2\sin\theta - a)^2}{2a(2\sin\theta - 1)} = \frac{\cos\theta Wa(2\sin\theta - 1)}{2}$ The GPE of P is -W. $PBsin\theta = -W$. $2acos\theta sin\theta$ So the total PE is $-Wa\left(-\frac{\sin\theta(2\cos\theta-1)}{2}-\frac{\cos\theta(2\sin\theta-1)}{2}+2\cos\theta\sin\theta\right)$ $= -Wa(-2sin\theta\cos\theta + \frac{1}{2}sin\theta + \frac{1}{2}\cos\theta + 2\cos\theta\sin\theta)$ $=-\frac{Wa(sin\theta+cos\theta)}{2}$ or -paW, where $p=\frac{sin\theta+cos\theta}{2}$ Now let $f(\theta) = sin\theta + cos\theta$ (noting that f(0) = 1 and $f\left(\frac{\pi}{2}\right) = 1$) Then $f'(\theta) = \cos\theta - \sin\theta$ Now $cos\theta \neq 0$, as $0 < \theta < \frac{\pi}{2}$, so that $tan\theta$ is defined. Then $f'(\theta) = 0 \Rightarrow cos\theta(1 - tan\theta) = 0$, so that $tan\theta = 1$ and hence $\theta = \frac{\pi}{4}$ (as $0 < \theta < \frac{\pi}{2}$) 2

fmng.uk

and
$$f\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$$

Then, as $f''(\theta) = -\sin\theta - \cos\theta$, so that $f''\left(\frac{\pi}{4}\right) < 0$,
the maximum value for $p = \frac{f(\theta)}{2}$ is $\frac{\sqrt{2}}{2}$, provided that the
expressions for the elastic PE are both positive
(as there will be some extension of the two springs, assuming that
 $W > 0$); which means that we require:
 $\sin\theta(2\cos\theta - 1) > 0$ and $\cos\theta(2\sin\theta - 1) > 0$
When $\theta = \frac{\pi}{4}$, the LHS of these two inequalities are both
 $\frac{1}{\sqrt{2}}\left(\frac{2}{\sqrt{2}} - 1\right) = \frac{1}{\sqrt{2}}\left(\sqrt{2} - 1\right) > 0$,

so that this requirement is met, and $p \leq \frac{\sqrt{2}}{2}$, as required. The smallest value of p occurs when $f(\theta)$ is minimised, provided that the value of θ is valid.

In the interval $0 \le \theta \le \frac{\pi}{2}$, this occurs when $\theta = 0$ or $\frac{\pi}{2}$, when $p = \frac{f(\theta)}{2} = \frac{1}{2}$; so $p > \frac{1}{2}$, as $\theta = 0$ and $\frac{\pi}{2}$ are not attainable.

But, once again, the expressions for the elastic PE are required to be positive, so that

 $sin\theta(2cos\theta - 1) > 0$ and $cos\theta(2sin\theta - 1) > 0$

Hence $2\cos\theta - 1 > 0$ and $2\sin\theta - 1$ (as $\sin\theta > 0$ and $\cos\theta$ when $0 < \theta < \frac{\pi}{2}$);

ie $cos\theta > \frac{1}{2}$ and $sin\theta > \frac{1}{2}$, whilst $f(\theta) = sin\theta + cos\theta$ is

minimised;

so
$$\frac{\pi}{6} < \theta < \frac{\pi}{3}$$
, and therefore $f(\theta) > \sin\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6}\right)$
(which equals $\sin\left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{3}\right)$)

Hence
$$p = \frac{f(\theta)}{2} > \frac{\frac{1}{2} + \frac{\sqrt{3}}{2}}{2} = \frac{1}{4}(1 + \sqrt{3})$$
, as required.

2nd Part

So $\frac{1}{2}\sqrt{2} \ge p > \frac{1}{4}(1+\sqrt{3})$

We want to show that $0.65 \le p < 0.75$

[It isn't clear how much we are allowed to know about $\sqrt{3}$ (eg that $\sqrt{3} \approx 1.732$), and similarly for $\sqrt{2}$. The following approach assumes no knowledge at all.]

This will be achieved if we can show that $\frac{1}{2}\sqrt{2} < 0.75$ and that $\frac{1}{4}(1 + \sqrt{3}) > 0.65$; or that $\sqrt{2} < \frac{3}{2}$ and $1 + \sqrt{3} > 2.6$ As $y = x^2$ is an increasing function, this is equivalent to showing that $2 < \frac{9}{4}$ and $3 > (1.6)^2 = 1 + 2(1)(0.6) + 0.36 = 2.56$, both of which hold.

Thus $0.65 \le p < 0.75$ and hence p = 0.7 to 1 sf.