(i)

The tension in PB is $\frac{s_{1} W(P B-a)}{a}$ and similarly for PC.
Resolving the forces on P horizontally:
$\frac{s_{1} W(P B-a)}{a} \cdot \cos \theta=\frac{s_{2} W(P C-a)}{a} \cdot \sin \theta$
And vertically: $\frac{s_{1} W(P B-a)}{a} \cdot \sin \theta+\frac{s_{2} W(P C-a)}{a} \cdot \cos \theta=W$
Also $P B=2 a \cos \theta$ and $P C=2 a \sin \theta$
Substituting these into (1) \& (2) gives:
$s_{1}(2 \cos \theta-1) \cdot \cos \theta=s_{2}(2 \sin \theta-1) \sin \theta\left(1^{\prime}\right)$
$\& s_{1}(2 \cos \theta-1) \cdot \sin \theta+s_{2}(2 \sin \theta-1) \cos \theta=1\left(2^{\prime}\right)$
Writing $t_{1}=s_{1}(2 \cos \theta-1) \& t_{2}=s_{2}(2 \sin \theta-1)$,
$t_{1} \cos \theta-t_{2} \sin \theta=0\left(1^{\prime \prime}\right)$
$\& t_{1} \sin \theta+t_{2} \cos \theta=1\left(2^{\prime \prime}\right)$
Then $\binom{t_{1}}{t_{2}}=\frac{1}{\cos ^{2} \theta+\sin ^{2} \theta}\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\binom{0}{1}$
$=\binom{\sin \theta}{\cos \theta}$
so that $s_{1}=\frac{\sin \theta}{2 \cos \theta-1}$ and $s_{2}=\frac{\cos \theta}{2 \sin \theta-1}$
(As $P B=2 a \cos \theta>a \& P C=2 a \sin \theta>a, 2 \cos \theta-1>0 \&$ $2 \sin \theta-1>0)$

(ii) $1^{\text {st }}$ Part

The elastic potential energy in PB is $\frac{1}{2}\left(\frac{s_{1} W}{a}\right)(P B-a)^{2}$
$=\frac{\sin \theta W(2 a \cos \theta-a)^{2}}{2 a(2 \cos \theta-1)}=\frac{\sin \theta W a(2 \cos \theta-1)}{2}$
and for PC it is $\frac{\cos \theta W(2 a \sin \theta-a)^{2}}{2 a(2 \sin \theta-1)}=\frac{\cos \theta W a(2 \sin \theta-1)}{2}$
The GPE of P is $-W . P B \sin \theta=-W .2 a \cos \theta \sin \theta$
So the total PE is
$-W a\left(-\frac{\sin \theta(2 \cos \theta-1)}{2}-\frac{\cos \theta(2 \sin \theta-1)}{2}+2 \cos \theta \sin \theta\right)$
$=-W a\left(-2 \sin \theta \cos \theta+\frac{1}{2} \sin \theta+\frac{1}{2} \cos \theta+2 \cos \theta \sin \theta\right)$
$=-\frac{W a(\sin \theta+\cos \theta)}{2}$ or $-p a W$, where $p=\frac{\sin \theta+\cos \theta}{2}$
Now let $f(\theta)=\sin \theta+\cos \theta$
(noting that $f(0)=1$ and $f\left(\frac{\pi}{2}\right)=1$)
Then $f^{\prime}(\theta)=\cos \theta-\sin \theta$
Now $\cos \theta \neq 0$, as $0<\theta<\frac{\pi}{2}$, so that $\tan \theta$ is defined.
Then $f^{\prime}(\theta)=0 \Rightarrow \cos \theta(1-\tan \theta)=0$, so that $\tan \theta=1$ and hence $\theta=\frac{\pi}{4}\left(\right.$ as $\left.0<\theta<\frac{\pi}{2}\right)$
and $f\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}$
Then, as $f^{\prime \prime}(\theta)=-\sin \theta-\cos \theta$, so that $f^{\prime \prime}\left(\frac{\pi}{4}\right)<0$, the maximum value for $p=\frac{f(\theta)}{2}$ is $\frac{\sqrt{2}}{2}$, provided that the expressions for the elastic PE are both positive (as there will be some extension of the two springs, assuming that $W>0$); which means that we require:
$\sin \theta(2 \cos \theta-1)>0$ and $\cos \theta(2 \sin \theta-1)>0$
When $\theta=\frac{\pi}{4}$, the LHS of these two inequalities are both
$\frac{1}{\sqrt{2}}\left(\frac{2}{\sqrt{2}}-1\right)=\frac{1}{\sqrt{2}}(\sqrt{2}-1)>0$,
so that this requirement is met, and $p \leq \frac{\sqrt{2}}{2}$, as required.
The smallest value of p occurs when $f(\theta)$ is minimised, provided that the value of θ is valid.

In the interval $0 \leq \theta \leq \frac{\pi}{2}$, this occurs when $\theta=0$ or $\frac{\pi}{2}$, when $p=\frac{f(\theta)}{2}=\frac{1}{2}$; so $p>\frac{1}{2}$, as $\theta=0$ and $\frac{\pi}{2}$ are not attainable.

But, once again, the expressions for the elastic PE are required to be positive, so that $\sin \theta(2 \cos \theta-1)>0$ and $\cos \theta(2 \sin \theta-1)>0$

Hence $2 \cos \theta-1>0$ and $2 \sin \theta-1$ (as $\sin \theta>0$ and $\cos \theta$ when $0<\theta<\frac{\pi}{2}$);
ie $\cos \theta>\frac{1}{2}$ and $\sin \theta>\frac{1}{2}$, whilst $f(\theta)=\sin \theta+\cos \theta$ is
minimised;
so $\frac{\pi}{6}<\theta<\frac{\pi}{3}$, and therefore $f(\theta)>\sin \left(\frac{\pi}{6}\right)+\cos \left(\frac{\pi}{6}\right)$
(which equals $\sin \left(\frac{\pi}{3}\right)+\cos \left(\frac{\pi}{3}\right)$)
Hence $p=\frac{f(\theta)}{2}>\frac{\frac{1}{2}+\frac{\sqrt{3}}{2}}{2}=\frac{1}{4}(1+\sqrt{3})$, as required.

2nd Part

So $\frac{1}{2} \sqrt{2} \geq p>\frac{1}{4}(1+\sqrt{3})$
We want to show that $0.65 \leq p<0.75$
[It isn't clear how much we are allowed to know about $\sqrt{3}$ (eg that $\sqrt{3} \approx 1.732$), and similarly for $\sqrt{2}$. The following approach assumes no knowledge at all.]

This will be achieved if we can show that $\frac{1}{2} \sqrt{2}<0.75$ and that
$\frac{1}{4}(1+\sqrt{3})>0.65 ;$
or that $\sqrt{2}<\frac{3}{2}$ and $1+\sqrt{3}>2.6$
As $y=x^{2}$ is an increasing function,
this is equivalent to showing that $2<\frac{9}{4}$
and $3>(1.6)^{2}=1+2(1)(0.6)+0.36=2.56$, both of which hold.

Thus $0.65 \leq p<0.75$ and hence $p=0.7$ to 1 sf.

