STEP 2022, P3, Q7-Solution (4 pages; 9/6/24)
(i) 1st Part
$f(r)=\left|\begin{array}{lll}\underline{i} & a & x \\ \underline{j} & b & y \\ \underline{k} & c & z\end{array}\right|=\left(\begin{array}{c}b z-c y \\ -(a z-c x) \\ a y-b x\end{array}\right)$
Then $f(f(r))=\left|\begin{array}{lll}\underline{i} & a & b z-c y \\ \underline{j} & b & c x-a z \\ \underline{k} & c & a y-b x\end{array}\right|$
so that the x component of $f(f(r))$ is
$b(a y-b x)-c(c x-a z)$
$=-x\left(b^{2}+c^{2}\right)+a b y+a c z$, as required

$2^{\text {nd }}$ Part

By symmetry, $f(f(r))=\left(\begin{array}{l}-x\left(b^{2}+c^{2}\right)+a b y+a c z \\ -y\left(a^{2}+c^{2}\right)+b a x+b c z \\ -z\left(a^{2}+b^{2}\right)+c a x+c b y\end{array}\right)$
As \underline{n} is a unit vector, $a^{2}+b^{2}+c^{2}=1$,
and so $f(f(r))=\left(\begin{array}{l}-x\left(a^{2}+b^{2}+c^{2}\right)+a b y+a c z+a^{2} x \\ -y\left(a^{2}+b^{2}+c^{2}\right)+b a x+b c z+b^{2} y \\ -z\left(a^{2}+b^{2}+c^{2}\right)+c a x+c b y+c^{2} z\end{array}\right)$
$=\left(\begin{array}{l}-x+a b y+a c z+a^{2} x \\ -y+b a x+b c z+b^{2} y \\ -z+c a x+c b y+c^{2} z\end{array}\right)$
$=\left(\begin{array}{l}(a x+b y+c z) a \\ (a x+b y+c z) b \\ (a x+b y+c z) c\end{array}\right)-\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
$=(\underline{n} \cdot \underline{r}) \underline{n}-\underline{r}$, as required.

3rd Part

$(\underline{n} \cdot \underline{r}) \underline{n}$ is the vector component of \underline{r} in the direction of \underline{n}
$(\underline{n} \cdot \underline{r}) \underline{n}-\underline{r}$ is perpendicular to \underline{n},
as $[(\underline{n} \cdot \underline{r}) \underline{n}-\underline{r}] \cdot \underline{n}=(\underline{n} \cdot \underline{r})(1)-\underline{r} \cdot \underline{n}=0$
Thus the vectors $\underline{r},(\underline{n} \cdot \underline{r}) \underline{n}$ and $(\underline{n} \cdot \underline{r}) \underline{n}-\underline{r}$ form a right-angled triangle.

(ii) [The wording of the question can be read in two ways:
(a) "By considering both $g(\underline{n})$ and $g(\underline{r})$, when \underline{r} is perpendicular to \underline{n}..." , or
(b) "By considering $g(\underline{n})$, and then, when \underline{r} is perpendicular to \underline{n}, considering $g(\underline{r}), \ldots$...

However, only (b) makes sense, as with $g(\underline{n}), \underline{r}$ is being set equal to \underline{n}, and so can't be perpendicular to \underline{n}.]

First of all, $g(\underline{n})=\underline{n}+\sin \theta \underline{n} \times \underline{n}+(1-\cos \theta)[(\underline{n} \cdot \underline{n}) \underline{n}-\underline{n}]$
$=\underline{n}+\underline{0}+\underline{0}=\underline{n}\left({ }^{*}\right)$
Then, when \underline{r} is perpendicular to \underline{n},
$g(\underline{r})=\underline{r}+\sin \theta \underline{n} \times \underline{r}+(1-\cos \theta)[(\underline{n} \cdot \underline{r}) \underline{n}-\underline{r}]$
$=\underline{r}+\sin \theta \underline{t}-(1-\cos \theta) \underline{r}$,
where \underline{t} is perpendicular to \underline{n} and \underline{r}, and has the same magnitude as \underline{r}
$\left.=\sin \theta \underline{t}+\cos \theta \underline{r} \quad{ }^{* *}\right)$
Consider a plane with normal \underline{n}. If \underline{r} is perpendicular to \underline{n}, then \underline{r} lies in this plane, and \underline{t} also lies in the plane, and is perpendicular to \underline{r}, such that $\underline{n}, \underline{r}$ and $\underline{t}=\underline{n} \times \underline{r}$ form a right-handed set of mutually perpendicular axes (as for $\underline{i}, \underline{j}$ and \underline{k}), and therefore $\underline{r}, \underline{t}$ and \underline{n} also form a right-handed set.

Now, any position vector \underline{r} can be resolved into two components: one parallel to \underline{n} and one perpendicular to \underline{n} (ie in the plane with normal \underline{n}); thus $\underline{r}=a \underline{n}+\underline{r}^{\prime}$
Then $g(\underline{r})=\left(a \underline{n}+\underline{r}^{\prime}\right)+\sin \theta \underline{n} \times\left(a \underline{n}+\underline{r}^{\prime}\right)$
$+(1-\cos \theta)\left[\left(\underline{n} \cdot\left[a \underline{n}+\underline{r}^{\prime}\right]\right) \underline{n}-\left(a \underline{n}+\underline{r}^{\prime}\right)\right]$
$=a g(\underline{n})+g\left(\underline{r}^{\prime}\right)$
$=a \underline{n}+\left(\cos \theta \underline{r}^{\prime}+\sin \theta \underline{t}^{\prime}\right)$, from $\left(^{*}\right)$ and $\left({ }^{* *}\right)$,
where $\underline{r}^{\prime}, \underline{t}^{\prime}$ and \underline{n} form a right-handed set, and $\left|\underline{t}^{\prime}\right|=\left|\underline{r}^{\prime}\right|$

Now, as $\binom{1}{0}$ maps to $\binom{\cos \theta}{\sin \theta}$ under an anti-clockwise rotation of θ (about the Origin), $g(\underline{r})$ is the result of a rotation of \underline{r} through an anti-clockwise angle θ, about an axis through the Origin in the direction of \underline{n} (the component of \underline{r} in the direction of \underline{n} being left unchanged).
(iii) Consider $h(\underline{n})=-\underline{n}-2[(\underline{n} \cdot \underline{n}) \underline{n}-\underline{n}]$
$=-\underline{n}-2(\underline{0})=-\underline{n}$
And when \underline{r} is perpendicular to \underline{n},
$h(\underline{r})=-\underline{r}-2[(\underline{n} \cdot \underline{r}) \underline{n}-\underline{r}]=-\underline{r}-2(-\underline{r})=\underline{r}$
Once again, any position vector \underline{r} can be resolved into components parallel and perpendicular to \underline{n}.

So Q is the reflection of R in the plane through the Origin with normal \underline{n}.

Alternatively:
For general \underline{r},
$h(\underline{r})=-\underline{r}-2[(\underline{n} \cdot \underline{r}) \underline{n}-\underline{r}]=\underline{r}-2(\underline{n} \cdot \underline{r}) \underline{n}$
As ($\underline{n} \cdot \underline{r}) \underline{n}$ is the projection of \underline{r} onto \underline{n}, the effect of subtracting $2(\underline{n} \cdot \underline{r}) \underline{n}$ from \underline{r} is to reflect R in the plane through the Origin with normal \underline{n}.

