STEP 2022, P3, Q9 - Solution (4 pages; 4/6/24)
(i) 1st Part

By Conservation of momentum, $m u=m v_{1}+k m v_{2}$,
so that $u=v_{1}+k v_{2}(1)$
By NLR, $\frac{v_{2}-v_{1}}{u-0}=e$, so that $v_{2}-v_{1}=e u$ (2)
Then, substituting for v_{1} from (1), $v_{2}-\left(u-k v_{2}\right)=e u$,
so that $v_{2}(1+k)=u(e+1)$, and hence $v_{2}=u \cdot \frac{e+1}{1+k}$
or $v_{2}=\beta u$, where $\beta=\frac{1+e}{k+1}$
And then, from (2), $v_{1}=v_{2}-e u=(\beta-e) u=\alpha u$,
where $\alpha=\frac{1+e}{k+1}-e=\frac{1+e-e(k+1)}{k+1}=\frac{1-k e}{k+1}$

2nd Part

Let T_{1} be the time between the 1 st collision between A \& B, and B hitting the wall; and let T_{2} be the time between B hitting the wall and the 2 nd collision between $A \& B$.

Then $v_{1}\left(T_{1}+T_{2}\right)=\frac{D}{2}, v_{2} T_{1}=D$ and $e v_{2} T_{2}=\frac{D}{2}$
Substituting for $T_{1} \& T_{2}$ from the $2^{\text {nd }} \& 3^{\text {rd }}$ of the above eq'ns into the $1^{\text {st }}$:
$v_{1}\left(\frac{D}{v_{2}}+\frac{D}{2 e v_{2}}\right)=\frac{D}{2}$, so that $v_{1} \cdot \frac{2 e+1}{2 e v_{2}}=\frac{1}{2}$ or $(2 e+1) v_{1}=e v_{2}$
Then, from the $1^{\text {st }}$ Part, $(2 e+1) \alpha u=e \beta u$,
so that $(2 e+1) \cdot \frac{1-k e}{k+1}=e \cdot \frac{1+e}{k+1}$
or $(2 e+1)(1-k e)=e(1+e)$
Then $1-k e=\frac{e(1+e)}{2 e+1}$,
so that ke $=1-\frac{e(1+e)}{2 e+1}=\frac{2 e+1-e(1+e)}{2 e+1}$
and hence $k=\frac{1+e-e^{2}}{e(2 e+1)}$, as required.
(ii) The 2nd Part of (i) can be applied to the collision between B and C , as the ratio of the masses is k ($\mathrm{A} \& \mathrm{~B}$ becoming $\mathrm{B} \& \mathrm{C}$, and D replaced with $3 d$. Thus we require $k=\frac{1+e-e^{2}}{e(2 e+1)}$

Let T_{1} be the time between the 1 st collision between $\mathrm{A} \& \mathrm{~B}$, and B colliding with C ; and let T_{2} be the time between B colliding with C , and the 2nd collision between A \& B.

Then $v_{1}\left(T_{1}+T_{2}\right)=d+\frac{3 d}{2}, v_{2} T_{1}=d$ and $\alpha v_{2} T_{2}=\frac{3 d}{2}$, as, from the $1^{\text {st }}$ Part of (i), the speed of the B after colliding with C will be reduced by the factor $\alpha=\frac{1-k e}{k+1}$ (B now taking the place of A).

Substituting for $T_{1} \& T_{2}$ from the $2^{\text {nd }} \& 3^{\text {rd }}$ of the above eq'ns into the $1^{\text {st: }}$
$v_{1}\left(\frac{d}{v_{2}}+\frac{3 d}{2 \alpha v_{2}}\right)=\frac{5 d}{2}$, so that $v_{1} \cdot \frac{2 \alpha+3}{2 \alpha v_{2}}=\frac{5}{2}$ or $(2 \alpha+3) v_{1}=5 \alpha v_{2}$
Also, from the $1^{\text {st }}$ Part of (i), $v_{1}=\frac{1-k e}{k+1} u$ and $v_{2}=\frac{1+e}{k+1} u$
Hence $\frac{v_{2}}{v_{1}}=\frac{2 \alpha+3}{5 \alpha}$ and $\frac{v_{2}}{v_{1}}=\frac{1+e}{1-k e}$,
so that $\frac{2 \alpha+3}{5 \alpha}=\frac{1+e}{1-k e}$
Then, as $\alpha=\frac{1-k e}{k+1}$, it follows that
$\frac{2(1-k e)+3(k+1)}{5(1-k e)}=\frac{1+e}{1-k e}$
$\Rightarrow k(3-2 e)+5=5(1+e)$
$\Rightarrow k=\frac{5 e}{3-2 e}$
Then, as we require $k=\frac{1+e-e^{2}}{e(2 e+1)}$,
$\frac{5 e}{3-2 e}=\frac{1+e-e^{2}}{e(2 e+1)}$
$\Rightarrow 5 e^{2}(2 e+1)=(3-2 e)\left(1+e-e^{2}\right)$
[we can establish that $e=\frac{1}{2}$ satisfies this eq'n]
$\Rightarrow e^{3}(10-2)+e^{2}(5+3+2)+e(-3+2)-3=0$
ie $8 e^{3}+10 e^{2}-e-3=0$
or $(2 e-1)\left(4 e^{2}+7 e+3\right)=0$
As $0<e<1,4 e^{2}+7 e+3>0$,
and so the only sol'n is $e=\frac{1}{2}$, as was to be shown.

