STEP 2022, P3, Q9 - Solution (4 pages; 4/6/24)

(i) 1st Part

By Conservation of momentum, $mu = mv_1 + kmv_2$,

so that
$$u = v_1 + kv_2$$
 (1)

By NLR,
$$\frac{v_2-v_1}{u-0}=e$$
 , so that $v_2-v_1=eu$ (2)

Then, substituting for v_1 from (1), $v_2 - (u - kv_2) = eu$,

so that
$$v_2(1+k) = u(e+1)$$
, and hence $v_2 = u \cdot \frac{e+1}{1+k}$

or
$$v_2 = \beta u$$
 , where $\beta = \frac{1+e}{k+1}$

And then, from (2), $v_1 = v_2 - eu = (\beta - e)u = \alpha u$,

where
$$\alpha = \frac{1+e}{k+1} - e = \frac{1+e-e(k+1)}{k+1} = \frac{1-ke}{k+1}$$

2nd Part

Let T_1 be the time between the 1st collision between A & B, and B hitting the wall; and let T_2 be the time between B hitting the wall and the 2nd collision between A & B.

Then
$$v_1(T_1 + T_2) = \frac{D}{2}$$
, $v_2T_1 = D$ and $ev_2T_2 = \frac{D}{2}$

Substituting for $T_1 \& T_2$ from the $2^{nd} \& 3^{rd}$ of the above eq'ns into the 1^{st} :

$$v_1(\frac{D}{v_2} + \frac{D}{2ev_2}) = \frac{D}{2}$$
, so that $v_1 \cdot \frac{2e+1}{2ev_2} = \frac{1}{2}$ or $(2e+1)v_1 = ev_2$

Then, from the 1st Part, $(2e + 1)\alpha u = e\beta u$,

so that
$$(2e+1) \cdot \frac{1-ke}{k+1} = e \cdot \frac{1+e}{k+1}$$

or
$$(2e+1)(1-ke) = e(1+e)$$

Then
$$1 - ke = \frac{e(1+e)}{2e+1}$$
,

so that
$$ke = 1 - \frac{e(1+e)}{2e+1} = \frac{2e+1-e(1+e)}{2e+1}$$

and hence $k = \frac{1+e-e^2}{e(2e+1)}$, as required.

(ii) The 2nd Part of (i) can be applied to the collision between B and C, as the ratio of the masses is k (A & B becoming B & C, and D replaced with 3d). Thus we require $k = \frac{1+e-e^2}{e(2e+1)}$

Let T_1 be the time between the 1st collision between A & B, and B colliding with C; and let T_2 be the time between B colliding with C, and the 2nd collision between A & B.

Then
$$v_1(T_1 + T_2) = d + \frac{3d}{2}$$
, $v_2T_1 = d$ and $\alpha v_2T_2 = \frac{3d}{2}$,

as, from the 1st Part of (i), the speed of the B after colliding with C will be reduced by the factor $\alpha = \frac{1-ke}{k+1}$ (B now taking the place of A).

Substituting for $T_1 \& T_2$ from the 2nd & 3rd of the above eq'ns into the 1st:

$$v_1(\frac{d}{v_2} + \frac{3d}{2\alpha v_2}) = \frac{5d}{2}$$
, so that $v_1 \cdot \frac{2\alpha + 3}{2\alpha v_2} = \frac{5}{2}$ or $(2\alpha + 3)v_1 = 5\alpha v_2$

Also, from the 1st Part of (i), $v_1 = \frac{1-ke}{k+1} u$ and $v_2 = \frac{1+e}{k+1} u$

Hence
$$\frac{v_2}{v_1} = \frac{2\alpha+3}{5\alpha}$$
 and $\frac{v_2}{v_1} = \frac{1+e}{1-ke}$,

so that
$$\frac{2\alpha+3}{5\alpha} = \frac{1+e}{1-ke}$$

Then, as $\alpha = \frac{1-ke}{k+1}$, it follows that

$$\frac{2(1-ke)+3(k+1)}{5(1-ke)} = \frac{1+e}{1-ke}$$

$$\Rightarrow k(3-2e) + 5 = 5(1+e)$$

$$\Rightarrow k = \frac{5e}{3-2e}$$

Then, as we require $k = \frac{1+e-e^2}{e(2e+1)}$,

$$\frac{5e}{3-2e} = \frac{1+e-e^2}{e(2e+1)}$$

$$\Rightarrow 5e^2(2e+1) = (3-2e)(1+e-e^2)$$

[we can establish that $e = \frac{1}{2}$ satisfies this eq'n]

$$\Rightarrow e^3(10-2) + e^2(5+3+2) + e(-3+2) - 3 = 0$$

ie
$$8e^3 + 10e^2 - e - 3 = 0$$

or
$$(2e-1)(4e^2+7e+3)=0$$

As
$$0 < e < 1$$
, $4e^2 + 7e + 3 > 0$,

and so the only sol'n is $e = \frac{1}{2}$, as was to be shown.