STEP 2023, P2, Q8 - Solution (5 pages; 20/7/24)

(i)

Referring to the diagram, the 6 edges are OA, OB, OC, AB, AC & BC The pairs of edges that don't share a vertex are:

OA & BC, OB & AC, OC & AB

The 4 faces are: OAB, OAC, OBC & ABC,

and their perimeters are $OA + AB + BO$,

 $OA + AC + CO$, $OB + BC + CO$ & $AB + BC + CA$

(where eg OA now denotes the length of edge OA, so that $AO =$ $OA)$

Suppose that $OA = BC$, $OB = AC$ & $OC = AB$ Then $OA + AB + BO = OA + OC + OB$, $OA + AC + CO = OA + OB + OC,$ $OB + BC + CO = OB + OA + OC$ and $AB + BC + CA = OC + OA + OB$

So, if a tetrahedron is isosceles, then its faces all have the same perimeter.

Suppose now that the faces all have the same perimeter, so that:

$$
OA + AB + BO = OA + AC + CO = OB + BC + CO
$$

= AB + BC + CA (*)
(Result to prove: OA = BC, OB = AC & OC = AB)
The eq'ns (*) simplify to:
AB + BO = AC + CO (1)
OA + AC = OB + BC (2)
and OB + CO = AB + CA (3)

 $OA - BC = OB - AC$ (from (2))

 $= AB - CO$ (from (3))

Write $X = OA - BC = OB - AC = AB - CO$

So result to prove is $X = 0$.

Then, from (1), $AB - CO = AC - BO$; thus $X = -X$ Hence $X = 0$, as required.

(ii) 1st Part

As the tetrahedron is isosceles, $OA = BC$;

ie $|\underline{a}| = |\underline{c} - \underline{b}|$,

fmng.uk

so that $\left|\underline{a}\right|^2 = \left|\underline{c} - \underline{b}\right|^2$, and hence $|\underline{a}|^2 = (\underline{c} - \underline{b}).(\underline{c} - \underline{b}) = \underline{c}.\underline{c} - 2\underline{b}.\underline{c} + \underline{b}.\underline{b}$ $=\left| \underline{c} \right|^2 - 2 \underline{b} \cdot \underline{c} + |b|^2$, so that $2\underline{b}\cdot \underline{c} = |b|^2 + |c|^2 - |\underline{a}|^2$, as required.

2nd Part

By symmetry, $2a \cdot b = |a|^2 + |b|^2 - |\underline{c}|^2$ and 2<u>a</u>. $c = |a|^2 + |c|^2 - |b|^2$ Then $2a \cdot b + 2a \cdot c = (|a|^2 + |b|^2 - |\underline{c}|^2) + (|a|^2 + |c|^2 - |\underline{b}|^2)$, so that $2a. (b + c) = 2|a|^2$, and hence $\underline{a}.(\underline{b} + \underline{c}) = |a|^2$, as required.

(iii) The square of the distance of G from O is:
\n
$$
\frac{1}{16} |\underline{a} + \underline{b} + \underline{c}|^2 = \frac{1}{16} (\underline{a} + \underline{b} + \underline{c}). (\underline{a} + \underline{b} + \underline{c})
$$
\n
$$
= \frac{1}{16} ([\underline{a}. \underline{a} + \underline{a}. (\underline{b} + \underline{c})] + [\underline{b}. \underline{b} + \underline{b}. (\underline{a} + \underline{c})] + [\underline{c}. \underline{c} + \underline{c}. (\underline{a} + \underline{b})])
$$
\n
$$
= \frac{1}{16} ([|a|^2 + |a|^2] + [|b|^2 + |b|^2] + [|c|^2 + |c|^2]),
$$

by the 2nd Part of (ii) and symmetry

$$
= \frac{1}{8}(|a|^2 + |b|^2 + |c|^2)
$$

The square of the distance of G from A is:

fmng.uk

$$
\left|\frac{1}{4}(\underline{a} + \underline{b} + \underline{c}) - \underline{a}\right|^2 = \left|\frac{1}{4}(\underline{b} + \underline{c} - 3\underline{a})\right|^2
$$

\n
$$
= \frac{1}{16}(\underline{b} + \underline{c} - 3\underline{a}).(\underline{b} + \underline{c} - 3\underline{a})
$$

\n
$$
= \frac{1}{16}([\underline{b} \cdot \underline{b} + \underline{b} \cdot \underline{c} - 3\underline{b} \cdot \underline{a}] + [\underline{c} \cdot \underline{b} + \underline{c} \cdot \underline{c} - 3\underline{c} \cdot \underline{a}]
$$

\n
$$
+ [-3\underline{a} \cdot \underline{b} - 3\underline{a} \cdot \underline{c} + 9\underline{a} \cdot \underline{a}])
$$

\n
$$
= \frac{1}{16}(9|a|^2 + |b|^2 + |c|^2 - 6\underline{a} \cdot \underline{b} - 6\underline{a} \cdot \underline{c} + 2\underline{b} \cdot \underline{c})
$$

\nwhich, from the 1st Part of (ii) and symmetry
\n
$$
= \frac{1}{16}(9|a|^2 + |b|^2 + |c|^2 - 3[|a|^2 + |b|^2 - |\underline{c}|^2] - 3[|a|^2 + |c|^2 - |\underline{b}|^2] + |[b|^2 + |c|^2 - |\underline{a}|^2])
$$

\n
$$
= \frac{1}{16}(2|a|^2 + 2|b|^2 + 2|c|^2),
$$

which thus equals the square of the distance of G from O, and by symmetry the squares of the distance of G from B and C have the same value; ie G is equidistant from all 4 vertices.

(iv) 1st Part

Consider
$$
|\underline{a} - \underline{b} - \underline{c}|^2
$$
 [which will be non-negative]
\n
$$
= (\underline{a} - \underline{b} - \underline{c}).(\underline{a} - \underline{b} - \underline{c})
$$
\n
$$
= \underline{a}.\underline{a} - \underline{a}.(\underline{b} + \underline{c}) - \underline{b}.\underline{a} + \underline{b}.\underline{b} + \underline{b}.\underline{c} - \underline{c}.\underline{a} + \underline{c}.\underline{b} + \underline{c}.\underline{c} (*)
$$
\nFrom the 2nd Part of (ii), $\underline{a}.(\underline{b} + \underline{c}) = |\underline{a}|^2$, so that
\n $\underline{a}.\underline{a} - \underline{a}.(\underline{b} + \underline{c}) = |\underline{a}|^2 - \underline{a}.(\underline{b} + \underline{c}) = 0$,
\nand (*) equals $-\underline{b}.\underline{a} + \underline{b}.\underline{b} + \underline{b}.\underline{c} - \underline{c}.\underline{a} + \underline{c}.\underline{b} + \underline{c}.\underline{c}$

 $= -a.(\underline{b} + \underline{c}) + |\underline{b}|^2 + 2\underline{b}.\underline{c} + |\underline{c}|^2$ $=-|\underline{a}|^2+|\underline{b}|^2+2\underline{b}.\underline{c}+|\underline{c}|^2$, from the 2nd Part of (ii) again. $= 4b$. c , from the 1st Part of (ii) Then, as $\left|\underline{a}-\underline{b}-\underline{c}\right|^2 \geq 0$, <u>b</u>. $\underline{c} \geq 0$, so that $\cos(BOC) = \frac{\underline{b} \cdot \underline{c}}{|\underline{b}|}$ $\frac{\underline{b}.\underline{c}}{|b|.|c|} \geq 0,$ and hence the angle between OB and OC cannot be obtuse. And, by relabelling the vertices, the angle between any pair of edges that share a vertex cannot be obtuse.

2nd Part

Suppose that $\underline{b}.\underline{c} = 0$ (for example), so that the angle between OB and OC is a right angle.

Then, from the 1st Part of (iv), $|\underline{a} - \underline{b} - \underline{c}|^2 = 0$, so that $|\underline{a} - \underline{b} - \underline{c}| = 0$, and hence $\underline{a} - \underline{b} - \underline{c} = \underline{0}$, so that <u> $a = b + c$ </u>, which means that the vertices A, B & C lie in the same plane; which contradicts the fact that OABC is a tetrahedron.

Hence the angle between OB and OC cannot be a right angle; and, by relabelling the vertices, the angle between any pair of edges that share a vertex cannot be a right angle.