STEP 2023, P2, Q9 - Solution (5 pages; 25/7/24)

(i) 1st Part

Applying N2L to the trailer, in the direction of motion, in the 3 situations:

$$T_{1} - \mu R_{1} - kMgsin\alpha = kMa_{1}, \text{ where } R_{1} = kMgcos\alpha \quad (1)$$

$$T_{2} - \mu R_{2} = kMa_{2}, \text{ where } R_{2} = kMg \quad (2)$$

$$T_{3} - \mu R_{3} + kMgsin\alpha = kMa_{3}, \text{ where } R_{3} = kMgcos\alpha = R_{1} \quad (3)$$

Writing
$$F = \mu Mg$$
, eq'ns (1)-(3) become:
 $T_1 - kFcos\alpha - kMgsin\alpha = kMa_1$ (1')
 $T_2 - kF = kMa_2$ (2')
 $T_3 - kFcos\alpha + kMgsin\alpha = kMa_3$ (3')
[We could have written $F = k\mu Mg$, but it seems advantageous to
keep the factor k in all terms, so that the T_i will be in terms of k .]

Applying N2L to the truck, in the direction of motion, in the 3 situations:

 $D - T_1 - Mgsin\alpha = Ma_1 (4)$ $D - T_2 = Ma_2 (5)$ $D - T_3 + Mgsin\alpha = Ma_3 (6)$

[Avoiding using (2') & (5), as these involve the unwanted T_2

(when trying to establish that $T_1 = T_3$). This also keeps it simple.]

Subtracting (6) from (4) [in order to eliminate *D*]:

 $T_3 - T_1 - 2Mgsin\alpha = M(a_1 - a_3)$ (7)

Subtracting (3') from (1') [in order to eliminate $kFcos\alpha$]: $T_1 - T_3 - 2kMgsin\alpha = kM(a_1 - a_3)$ (8)

Then, eliminating $2Mgsin\alpha$ from (7) & (8) gives: $T_1 - T_3 + k(M(a_1 - a_3) + T_1 - T_3) = kM(a_1 - a_3)$, and hence $(1 + k)(T_1 - T_3) = 0$, so that $T_1 = T_3$, as required.

2nd Part

Adding eq'ns (4) & (6): $2D - T_1 - T_3 = M(a_1 + a_3)$ Then, substituting for *D* from eq'n (5): $2(Ma_2 + T_2) - T_1 - T_3 = M(a_1 + a_3),$ so that $M(a_1 + a_3 - 2a_2) = 2(T_2 - T_1)$, as required (as $T_3 = T_1$).

(ii)(a) Subtracting eq'n (2) from eq'n (1): $(T_1 - \mu k Mg cos\alpha - k Mg sin\alpha) - (T_2 - \mu k Mg) = k Ma_1 - k Ma_2$

fmng.uk

so that $T_1 - T_2 = kM(a_1 - a_2 + \mu g cos \alpha + g sin \alpha - \mu g)$ Then, from the 2nd Part of (i), $M(a_1 + a_3 - 2a_2) = 2(T_2 - T_1)$, so that

$$M(a_1 + a_3 - 2a_2) = 2kM(a_1 - a_2 + \mu g \cos \alpha + g \sin \alpha - \mu g)$$

and so

$$a_1 + a_3 - 2a_2 = 2k(a_1 - a_2 + \mu g \cos \alpha + g \sin \alpha - \mu g)$$
(9)

Then, subtracting eq'n (2) from eq'n (3), and using the result that $T_3 = T_1$: $(T_1 - \mu k M g cos \alpha + k M g sin \alpha) - (T_2 - \mu k M g) = k M a_3 - k M a_2$, so that $T_1 - T_2 = k M (a_3 - a_2 + \mu g cos \alpha - g sin \alpha - \mu g)$, and so, using $M(a_1 + a_3 - 2a_2) = 2(T_2 - T_1)$ again, $a_1 + a_3 - 2a_2 = 2k(a_3 - a_2 + \mu g cos \alpha - g sin \alpha - \mu g)$ (10)

Then, from (9) & (10), $a_1 - a_2 + \mu g \cos \alpha + g \sin \alpha - \mu g$ = $a_3 - a_2 + \mu g \cos \alpha - g \sin \alpha - \mu g$, so that $a_1 - a_3 + 2g \sin \alpha = 0$, and hence $g = \frac{a_3 - a_1}{2 \sin \alpha}$

This shows that $a_3 > a_1$, which is equivalent to $a_3 > \frac{1}{2}(a_1 + a_3)$

The lower inequality is equivalent to $a_1 + a_3 - 2a_2 > 0$, which, from the 2nd Part of (ii), is equivalent to $T_2 > T_1$. Thus, the result to prove is: $T_2 > T_1$

fmng.uk

From (2), $T_2 - \mu kMg = kMa_2$ and from (5), $D - T_2 = Ma_2$ [This could enable us to obtain an expression for T_2 , free of a_2 . We might be able to use the fact that D > 0.] Then $T_2 - \mu kMg = k(D - T_2)$, so that $T_2(k + 1) = kD + \mu kMg$

Also, from (1), $T_1 - \mu kMgcos\alpha - kMgsin\alpha = kMa_1$, and from (4), $D - T_1 - Mgsin\alpha = Ma_1$ Then $T_1 - \mu kMgcos\alpha - kMgsin\alpha = k(D - T_1 - Mgsin\alpha)$ so that $T_1(k + 1) = kD + \mu kMgcos\alpha$

Then $(T_2 - T_1)(k + 1) = \mu k Mg(1 - cos\alpha) > 0$ (as $0 < \alpha < \frac{\pi}{2}$), and hence $T_2 > T_1$, as required. [Note that we haven't used the fact that $\mu < 1$ yet!]

(b) Once again, from (2), $T_2 - \mu kMg = kMa_2$ and from (5), $D - T_2 = Ma_2$, and adding these gives $D - \mu kMg = (k + 1)Ma_2$

Also, again from (1), $T_1 - \mu kMgcos\alpha - kMgsin\alpha = kMa_1$, and from (4), $D - T_1 - Mgsin\alpha = Ma_1$, and adding these gives $\begin{aligned} D &- \mu k M g \cos \alpha - k M g \sin \alpha - M g \sin \alpha = (k+1) M a_1, \end{aligned}$ Then $(k+1) M (a_2 - a_1)$ $&= -\mu k M g + \mu k M g \cos \alpha + k M g \sin \alpha + M g \sin \alpha$ $&> k M g (-\mu + \mu \cos \alpha + \sin \alpha)$ $&> k M g (-\mu + \mu \cos \alpha + \mu \sin \alpha), \text{ as } \mu < 1$ $&= k M g \mu (\cos \alpha + \sin \alpha - 1)$ and so we will have shown that $a_1 < a_2$ if we can establish that $\cos \alpha + \sin \alpha - 1 > 0$ for $0 < \alpha < \frac{\pi}{2}$ Now, $(\cos \alpha + \sin \alpha)^2 = \cos^2 \alpha + \sin^2 \alpha + 2\cos \alpha \sin \alpha$, so that $(\cos \alpha + \sin \alpha)^2 = 1 + \sin(2\alpha) > 1$ for $0 < \alpha < \frac{\pi}{2}$, and hence $\cos \alpha + \sin \alpha > 1$, as $\cos \alpha + \sin \alpha > 0$, and so $\cos \alpha + \sin \alpha - 1 > 0$, as required, and therefore $a_1 < a_2$.