STEP – Complex Numbers (14 pages; 12/4/24)

Quiz

- (1) What is the imaginary part of 1 + 2i?
- (2) Classify the following as imaginary or complex:
- (a) 1 + 2i (b) 2i (c) 0
- (3) What is the geometric effect of:
- (a) multiplication by i (b) multiplication by -1 (c) taking the

conjugate

Answers

(1) 2

- (2) (a) (non-real) complex (b) imaginary & complex
- (c) imaginary & complex
- (3) (a) rotation by $\frac{\pi}{2}$ anti-clockwise
- (b) rotation by π (c) reflection in Real axis

Method for finding $\sqrt{24 - 10i}$?

To find $\sqrt{24 - 10i}$, let $24 - 10i = (a + bi)^2$; then equate real and imaginary parts.

Find $(1 + i)^4$

$$1 + i = \sqrt{2}e^{i\pi/4}$$

Hence $(1 + i)^4 = 4e^{i\pi} = 4(\cos\pi + i\sin\pi) = -4$

 $p-q = ki(r+s) \Rightarrow p^* - q^* = ?$,

where *k* is real (and *p*, *q*, *r* & *s* are non-real complex numbers)

 $[p-q=ki(r+s)\Rightarrow p^*-q^*=?$,

where *k* is real (and *p*, *q*, *r* & *s* are non-real complex numbers)]

Solution

$$([a+bi] + [c+di])^* = a + c - (b+d)i$$
$$= (a+bi)^* + (c+di)^*$$

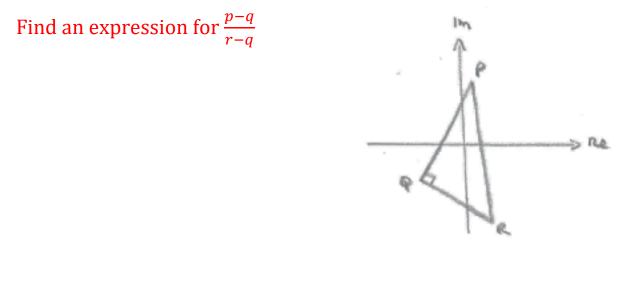
Also
$$[(a + bi)(c + di)]^* = [ac - bd + i(bc + ad)]^*$$

= $ac - bd - i(bc + ad)$
and $(a + bi)^*(c + di)^* = (a - bi)(c - di)$
= $ac - bd - i(bc + ad)$

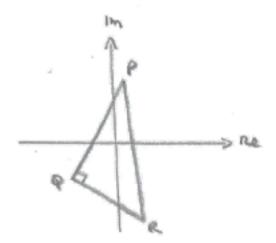
[Or consider conjugate as reflection in Real axis.]

$$p^* - q^* = (p - q)^* = [ki(r + s)]^*$$
$$= k^*i^*(r + s)^* = k(-i)(r^* + s^*)$$

The corners of a right-angled triangle are the points P, Q & R in the Argand diagram (in anti-clockwise order, with the right-angle being at Q), represented by the complex numbers p, q & r.



$$p - q = ki(r - q)$$
, where k is real;
so that $\frac{p-q}{r-q} = ki$



Find the modulus and argument of $e^{\frac{7\pi i}{10}} - e^{-\frac{9\pi i}{10}}$

[Find the modulus and argument of $e^{\frac{7\pi i}{10}} - e^{-\frac{9\pi i}{10}}$]

Solution

Write $z = e^{\frac{7\pi i}{10}} - e^{-\frac{9\pi i}{10}}$ in the form $e^{a\pi i} (e^{b\pi i} - e^{-b\pi i})$ So $a + b = \frac{7}{10} \& a - b = -\frac{9}{10}$ Then $a = -\frac{1}{10} \& b = \frac{8}{10}$ and $e^{\frac{7\pi i}{10}} - e^{-\frac{9\pi i}{10}} = e^{-\frac{\pi i}{10}} (e^{\frac{8\pi i}{10}} - e^{-\frac{8\pi i}{10}})$ $= e^{-\frac{\pi i}{10}} (2isin(\frac{4\pi}{5}))$ Then $|z| = \left| e^{-\frac{\pi i}{10}} \right| \left| 2isin(\frac{4\pi}{5}) \right| = (1)(2sin(\frac{4\pi}{5}))$ $= 2sin(\pi - \frac{4\pi}{5}) = 2sin(\frac{\pi}{5})$ and $arg(z) = arg(e^{-\frac{\pi i}{10}}) + arg(2isin(\frac{4\pi}{5}))$ $= -\frac{\pi}{10} + \frac{\pi}{2} = \frac{4\pi}{10} = \frac{2\pi}{5}$ How are the complex numbers $cos\theta + isin\theta$ and $sin\theta + icos\theta$ related?

$$sin\theta + icos\theta = cos\left(\frac{\pi}{2} - \theta\right) + isin\left(\frac{\pi}{2} - \theta\right)$$

As both complex numbers have a modulus of 1, $sin\theta + icos\theta$ is the reflection of $cos\theta + isin\theta$ in the line Re = Im

