Contents

(1) Constraints are of the \geq type
(2) 2-Stage Simplex Method
(3) The Big M (Simplex) Method
(4) Complications for the Simplex Method

(1) Constraints are of the \geq type

The basic Simplex method (covered in Part 1) assumes that all the constraints are of the \leq type (apart from $x \geq 0, y \geq 0$).

A constraint such as $3 x+2 y-z \geq-2$ (as in Example 3 in Part 1) can just be rewritten as $-3 x-2 y+z \leq 2$, but the constraint $3 x+2 y-z \geq 2$ could not be dealt with in this way, as it would leave us with a negative value on the RHS.

There are two methods for dealing with such a problematic constraint: the 2-Stage Simplex method and the Big M (Simplex) method.
(2) 2-Stage Simplex Method

Example

Maximise $\mathrm{P}=x+y$
subject to $2 x+3 y \leq 12$

$$
\begin{aligned}
& 6 x+5 y \leq 30 \\
& x+y \geq 4
\end{aligned}
$$

Create slack and surplus variables as usual (for the \leq and \geq constraints respectively), but introduce an artificial variable for the $x+y \geq 4$ constraint.

$$
\begin{align*}
P-x-y & =0 \tag{1}\\
2 x+3 y+s_{1} & =12 \tag{2}\\
6 x+5 y+s_{2} & =30 \tag{3}\\
x+y-s_{3}+a_{1} & =4
\end{align*}
$$

a_{1} is needed because $x+y-s_{3}=4$ doesn't allow $x=y=0$, since $s_{3} \geq 0$; but with the artificial variable we can now start with $x=y=s_{3}=0 \& a_{1}=4$

Initial solution:

$$
x=y=s_{3}=0 ; s_{1}=12, s_{2}=30, a_{1}=4, P=0
$$

The aim is to minimise a_{1}, so that (if possible) the solution moves into the feasible region.

Create a new objective: minimise $A=a_{1}$
[It might seem a bit unnecessary to create another variable with the same value as a_{1}, but it enables the method to be extended easily to cases where there are two or more artificial variables see later example.]

From (4), rewrite $A=a_{1}$ as $A+x+y-s_{3}=4$
Re-labelling the rows:

Referring to the Simplex tableau above:
1st row: new objective (1st stage of method)
and row: original objective (2nd stage of method)
Each stage of the method involves applying the ordinary Simplex method.

To minimise A: the positive coefficients of $x \& y$ mean that x or y could be increased (alternatively maximise $-A$).

Choose x as the pivot column (eg) and apply the ratio test:

3rd row: $\frac{12}{2}=6,4$ th row: $\frac{30}{6}=5,5$ th row: $\frac{4}{1}=4$

As $A=0$, the 1 st stage has been successfully completed.
Now remove the 1st row, and the columns for A and a_{1}
(a_{1} is a non-basic variable and is being set to 0)
Solution so far: $x=4, y=0, P=4$
The 2nd stage is now to maximise P, as usual.
The remainder of the working is as follows:

Choose s_{3} as the pivot column, and apply the ratio test:
8th row: $\frac{4}{2}=2,9$ th row: $\frac{6}{6}=1,10$ th row: n/a

Choose y as the pivot column, and apply the ratio test: 12th row: $\frac{2}{\left(\frac{4}{3}\right)}=\frac{3}{2}, 13$ th row: n/a, 14th row: $\frac{5}{\left(\frac{5}{6}\right)}=6$

The coefficients of $s_{1} \& s_{2}$ in (15) are both positive, so we have maximised P.

Solution: $x=\frac{15}{4}, y=\frac{3}{2}, P=\frac{21}{4}(B)$
(3) The Big M (Simplex) Method (same example)

This starts off in the same way as the 2-Stage method, by creating the artifical variable.

$$
\begin{align*}
P-x-y & =0 \tag{1}\\
2 x+3 y+s_{1} & =12 \tag{2}\\
6 x+5 y+s_{2} & =30 \tag{3}\\
x+y-s_{3}+a_{1} & =4 \tag{4}
\end{align*}
$$

We now modify the objective to:
maximise $P=x+y-M a_{1}$, where M is a large number (eg 1000)

This ensures that minimising a_{1} is given 1 st priority, as the $M a_{1}$ term has the biggest effect on P.

Re-write as $P=x+y-M\left(4-x-y+s_{3}\right)$
giving $P-(1+M) x-(1+M) y+M s_{3}=-4 M$

We now carry out the Simplex method as usual, and we should find that the RHS of the objective row becomes free of M.

Choose x as the pivot column (eg) and apply the ratio test:
2nd row: $\frac{12}{2}=6,3$ rd row: $\frac{30}{6}=5,4$ th row: $\frac{4}{1}=4$ (as before)

Once M only appears in the a_{1} column, we can set a_{1} to 0 , and remove the a_{1} column, arriving at the same tableau as at the end of the 1 st stage of the 2 -stage method (and then continue as before).

(4) Complications for the Simplex Method

The following is a summary of the various ways in which complications can arise.
(i) Objective function parallel to a constraint line (if two variables) or plane (if three).

As for the Linear Programming method, more than one solution is possible.
(ii) Artificial variables may be needed for more than one constraint. In this case, let $A=a_{1}+a_{2}+\cdots$ for the 2-Stage Simplex, and have $-M\left(a_{1}+a_{2}+\cdots\right)$ in place of $-M a_{1}$ for theBig M method.
(iii) When applying the 2-Stage Simplex or Big M method, it may not be possible to reduce A to 0 ; ie there may not be a solution to the problem.

$$
\begin{align*}
& \text { Example (2-Stage Simplex) } \\
& \text { Maximise } \mathrm{P}=x+y \\
& \text { subject to } 2 x+3 y \geq 12 \\
& \qquad 6 x+5 y \leq 30 \\
& \qquad y \geq 5 \\
& P-x-y=0 \tag{1}\\
& 2 x+3 y-s_{1}+a_{1}=12 \tag{2}\\
& 6 x+5 y+s_{2}=30 \tag{3}
\end{align*}
$$

$$
y-s_{3}+a_{2}=5
$$

Minimise $A=a_{1}+a_{2}=\left(12-2 x-3 y+s_{1}\right)+\left(5-y+s_{3}\right)$
$\Rightarrow A+2 x+4 y-s_{1}-s_{3}=17$
min. max.

A	p	x	y	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	
1	0	2	4	-1	0	-1	0	0	17
0	1	-1	-1	0	0	0	0	0	0
0	0	2	3	-1	0	0	1	0	12
0	0	6	5	0	1	0	0	0	30
0	0	0	1	0	0	-1	0	1	5

1st stage
pinct columa : y
ratio test
(2) n / a
(3) $\frac{12}{3}=4$
(4) $\frac{30}{5}=6$
(5) $\frac{5}{3}=5$

A	p	x	y	s_{1}	s_{2}	s_{2}	a_{1}	a_{2}		
1	0	$-\frac{2}{3}$	0	$\frac{1}{3}$	0	-1	$-\frac{4}{3}$	0	1	$(6)=(0)-4 \times(8)$
0	1	$-\frac{1}{3}$	0	$-\frac{1}{3}$	0	0	$\frac{1}{3}$	0	4	$(7)=(2)+(3)$
0	0	$\frac{2}{3}$	1	$-\frac{1}{3}$	0	0	$\frac{1}{3}$	0	4	$(8)=(3) \div 3$
0	0	$2 \frac{2}{3}$	0	$\frac{5}{3}$	1	0	$-\frac{5}{3}$	0	10	$(9)=(4)-5 \times(2)$
0	0	$-\frac{2}{3}$	0	$\frac{1}{3}$	0	-1	$-\frac{1}{3}$	1	1	$(10)=(5)-(8)$

pinct whan : s_{t}
rekio lest:
(3) nin
(3) ala
(9) $\frac{10}{\left(\frac{5}{3}\right)}=6$
(C) $\frac{1}{\left(\frac{1}{3}\right)}=3$

A has bean minimised, with $a_{1}=4_{2}=0$
\max

p	x	y	s_{1}	s_{2}	s_{3}	
1	-1	0	0	0	-1	s
0	0	1	0	0	-1	s
0	6	0	0	1	5	5
0	-2	0	1	0	-3	3

piwot columa : $x \quad\left(\mathrm{~S}_{3}\right.$ is also passibn)
ratio test :
(4) it the only posisbe rome

pisote column: S_{3}
ratie test: (18) is the onty poiricte nolve

0	$a c$	y	s_{1}	s_{2}	s_{3}	
1	$\frac{1}{5}$	0	0	$\frac{1}{5}$	0	6
0	$\frac{6}{3}$	1	0	$\frac{2}{5}$	0	6
0	$\frac{6}{5}$	0	0	$\frac{1}{5}$	1	1
0	$\frac{12}{5}$	0	1	$\frac{3}{5}$	0	6

(22) $=(18) \times \frac{6}{5}$
(2) $=(17)+\frac{1}{3} \times(22$

$$
\Rightarrow \text { solin is }: \quad x=0, y=6 \quad\left(s_{1}=6, s_{2}=0, s_{3}=0\right)
$$

$$
p=6
$$

Example (Big M):

Bign melose

$$
\begin{aligned}
\text { Matimise } p^{\prime} & =p-\left(a_{1}+a_{2}\right) M \\
& =x+y-\left(12-2 x-3 y+s_{1}+s-y+s_{3}\right) M \\
& =(1+2 M) x+(1+4 M) y-M s_{1}-M s_{3}-17 M
\end{aligned}
$$

$m a x$	p^{1}	x	y	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}
1	$-(1+2 M)$	$-(1+4 M)$	M	0	m	0	0	$-n M$
0	2	$(3$	-1	0	0	1	0	12
0	6	s	0	1	0	0	0	30
0	0	1	0	0	-1	0	1	s

ratio tese:
(2) $\frac{12}{3}=4$
(3) $\frac{30}{5}=6$
(4) $\frac{5}{1}=5$

pinst rows: s_{1}
patio lest
(6) nia
(7) $\frac{10}{(5 / 3)}=6$
(8) $\sum_{(1 / 3)}^{1}=3$

then as per the 2 -stage simgres metiod
(iv) Constraints that are equalities

Replace with two inequality constraints:
ie for $x+y=4$: replace with $x+y \leq 4 \& x+y \geq 4$

Example

Bin method
Maximise $x+y$, subject to $2 x+y \leqslant 12$ and $x=4$
$2 x+y+5 y=12$
$x-s_{2}+a_{1}=4$
$x+53=4$
Modified objective: maximise $x+y-m a_{1}$ (P)

$$
\begin{aligned}
& =x+y-m\left(4-x+s_{2}\right) \\
& =(1+m) x+y-m s_{2}-4 m
\end{aligned}
$$

p	x	y	s_{1}	s_{2}	s_{3}	a_{1}	
1	$-(1+M)$	-1	0	M	0	0	$-4 M$

piret row is is
ratio tesk
(2) $\frac{12}{2}=6$
(3) $\frac{4}{1}=4$
(4) $\frac{4}{1}=4$

piust cat y \Rightarrow piner new : (b)

p	x	y	s_{1}	r_{2}	s_{2}	
1	0	0	1	1	0	8
0	0	1	1	2	0	4
0	1	0	0	-1	0	4
0	0	0	0	1	1	0

(0) $=(5)+10$
(10) $=0$
(4) $=$ (7)
(2) $=$ (3)
\Rightarrow soth is $: x=4, y=4 \quad\left(s_{1}=0, s_{2}=0, s_{3}=0\right)$

$$
p=8
$$

Note: If there is a constraint such as, for example:
$x+y+z=100$, then this can enable the variable z (for example) to be eliminated from the problem (noting that the constraint $z \geq 0$ becomes the constraint $100-x-y \geq 0$ or $x+y \leq 100$).

This can enable a 3-variable problem to be tackled by a graphical method (involving a feasible region), rather than having to employ the Simplex method.
(v) $x+y<4(\mathrm{eg})$

Use $x+y \leq 4$ instead, and reduce x or y slightly, if necessary.
(vi) Big M method: to minimise $P=x+y$

Modify to minimising $x+y+M a_{1}$ (instead of maximising $\left.x+y-M a_{1}\right)$
(vii) If x (for example) can be negative, then replace x with $x_{1}-x_{2}$, where $x_{1}, x_{2} \geq 0$ (This allows x to be negative, if necessary.)

