Simplex Algorithm - Part 2 (18 pages; 18/5/24) #### **Contents** - (1) Constraints are of the \geq type - (2) 2-Stage Simplex Method - (3) The Big M (Simplex) Method - (4) Complications for the Simplex Method #### (1) Constraints are of the \geq type The basic Simplex method (covered in Part 1) assumes that all the constraints are of the \leq type (apart from $x \geq 0$, $y \geq 0$). A constraint such as $3x + 2y - z \ge -2$ (as in Example 3 in Part 1) can just be rewritten as $-3x - 2y + z \le 2$, but the constraint $3x + 2y - z \ge 2$ could not be dealt with in this way, as it would leave us with a negative value on the RHS. There are two methods for dealing with such a problematic constraint: the 2-Stage Simplex method and the Big M (Simplex) method. # (2) 2-Stage Simplex Method # **Example** Maximise $$P = x + y$$ subject to $2x + 3y \le 12$ $6x + 5y \le 30$ $x + y \ge 4$ Create slack and surplus variables as usual (for the $\leq and \geq$ constraints respectively), but introduce an artificial variable for the $x + y \geq 4$ constraint. $$P - x - y = 0 (1)$$ $$2x + 3y + s_1 = 12 (2)$$ $$6x + 5y + s_2 = 30 (3)$$ $$x + y - s_3 + a_1 = 4 (4) (s_1, s_2, s_3, a_1 \ge 0)$$ a_1 is needed because $x+y-s_3=4$ doesn't allow x=y=0, since $s_3\geq 0$; but with the artificial variable we can now start with $x=y=s_3=0$ & $a_1=4$ Initial solution: $$x = y = s_3 = 0$$; $s_1 = 12$, $s_2 = 30$, $a_1 = 4$, $P = 0$ The aim is to minimise a_1 , so that (if possible) the solution moves into the feasible region. Create a new objective: minimise $A = a_1$ [It might seem a bit unnecessary to create another variable with the same value as a_1 , but it enables the method to be extended easily to cases where there are two or more artificial variables - see later example.] From (4), re-write $$A = a_1$$ as $A + x + y - s_3 = 4$ (5) Re-labelling the rows: Referring to the Simplex tableau above: 1st row: new objective (1st stage of method) 2nd row: original objective (2nd stage of method) Each stage of the method involves applying the ordinary Simplex method. To minimise A: the positive coefficients of x & y mean that x or y could be increased (alternatively maximise -A). Choose *x* as the pivot column (eg) and apply the ratio test: 3rd row: $$\frac{12}{2} = 6$$, 4th row: $\frac{30}{6} = 5$, 5th row: $\frac{4}{1} = 4$ As A = 0, the 1st stage has been successfully completed. Now remove the 1st row, and the columns for A and a_1 (a_1 is a non-basic variable and is being set to 0) Solution so far: x = 4, y = 0, P = 4 The 2nd stage is now to maximise P, as usual. The remainder of the working is as follows: Choose s_3 as the pivot column, and apply the ratio test: 8th row: $$\frac{4}{2} = 2$$, 9th row: $\frac{6}{6} = 1$, 10th row: n/a Choose y as the pivot column, and apply the ratio test: 12th row: $$\frac{2}{\left(\frac{4}{3}\right)} = \frac{3}{2}$$, 13th row: n/a , 14th row: $\frac{5}{\left(\frac{5}{6}\right)} = 6$ The coefficients of s_1 & s_2 in (15) are both positive, so we have maximised P. Solution: $$x = \frac{15}{4}$$, $y = \frac{3}{2}$, $P = \frac{21}{4}$ (B) # (3) The Big M (Simplex) Method (same example) This starts off in the same way as the 2-Stage method, by creating the artifical variable. $$P - x - y = 0 (1)$$ $$2x + 3y + s_1 = 12 (2)$$ $$6x + 5y + s_2 = 30 (3)$$ $$x + y - s_3 + a_1 = 4 (4)$$ We now modify the objective to: maximise $P = x + y - Ma_1$, where M is a large number (eg 1000) This ensures that minimising a_1 is given 1st priority, as the Ma_1 term has the biggest effect on P. Re-write as $$P = x + y - M(4 - x - y + s_3)$$ giving $P - (1 + M)x - (1 + M)y + Ms_3 = -4M$ $$P \times 5 = 52 \times 53 \times 9$$ $I = (I+M) = (I+M) \times 0 \times 0 \times 12 \times 0$ $O \times 2 \times 3 \times 1 \times 0 \times 0 \times 0 \times 12 \times 0$ $O \times 6 \times 0 \times 1 \times 0 \times 0 \times 12 \times 0$ $O \times 0 \times 1 \times 0 \times 0 \times 12 \times 0$ $O \times 0 \times 1 \times 0 \times 0 \times 12 \times 0$ $O \times 0 \times 0 \times 0 \times 1 \times 0 \times 0 \times 0$ $O \times 0 \times 0 \times 0 \times 0 \times 0 \times 0 \times 0$ We now carry out the Simplex method as usual, and we should find that the RHS of the objective row becomes free of M. Choose *x* as the pivot column (eg) and apply the ratio test: 2nd row: $$\frac{12}{2} = 6$$, 3rd row: $\frac{30}{6} = 5$, 4th row: $\frac{4}{1} = 4$ (as before) Once M only appears in the a_1 column, we can set a_1 to 0, and remove the a_1 column, arriving at the same tableau as at the end of the 1st stage of the 2-stage method (and then continue as before). # (4) Complications for the Simplex Method The following is a summary of the various ways in which complications can arise. (i) Objective function parallel to a constraint line (if two variables) or plane (if three). As for the Linear Programming method, more than one solution is possible. - (ii) Artificial variables may be needed for more than one constraint. In this case, let $A=a_1+a_2+\cdots$ for the 2-Stage Simplex, and have $-M(a_1+a_2+\cdots)$ in place of $-Ma_1$ for the Big M method. - (iii) When applying the 2-Stage Simplex or Big M method, it may not be possible to reduce *A* to 0; ie there may not be a solution to the problem. # **Example** (2-Stage Simplex) Maximise $$P = x + y$$ subject to $2x + 3y \ge 12$ $6x + 5y \le 30$ $y \ge 5$ $$P - x - y = 0$$ (1) $2x + 3y - s_1 + a_1 = 12$ (2) $6x + 5y + s_2 = 30$ (3) $$y - s_3 + a_2 = 5$$ (4) Minimise $$A = a_1 + a_2 = (12 - 2x - 3y + s_1) + (5 - y + s_3)$$ $$\Rightarrow A + 2x + 4y - s_1 - s_3 = 17$$ | Min. | max. | | | | 46 | | | | ur. | | |---------------------------|--------------------------------------|-----|----|--|----|-------|-----|-----|-------|-----------| | A | P | 26 | 7 | 5, | 52 | 53 | A 1 | 92 | | | | 1 | O . | 2. | 4 | - 1 | 0 | and a | 0 | ٥ | 17 | 0 | | • | an man min grade to error of the sea | - I | -1 | O CONTRACTOR OF THE PERSON NAMED | ٥ | ٥ | | 0 | o . | 0 | | Accordance of the Control | 0 | Ž. | 3 | = 1 | 0 | 0 | 1 | 0 | 15 | C | | Q | | 6 | s | 0 | Ą | 9 | 0 | 9 | 30 | (3) | | 0 | 0 | | | | | (| | | | (3) | | | 0 | 0 | 4 | 0 | 0 | 160- | 0 | N . | T Way | "Villand" | ratio test 1 @ n/a @ = 4 @ 30 = 6 @ = = 5 | A | P | 24 | 4 | S, | 52 | \$3 | ۹, | a2 | Account of the Control Contro | | |--|---------------------------------|----------------|------------------|--|------------------------------|-----|----------------------------|----|--|----------------| | THE PARTY OF P | and garden will proposed to the | Z Z | 0 | arconization senter 1879 | Ó | -1 | - 4 | 0 | ı | 6 = 0 -4 x8 | | 1 | Q | 3
 | and the second | entraccionistra de la compositorio della compositorio de la compositorio de la compositorio de la compositorio della compositor | O . | 9 | 3 | ٥ | 4 | 0 = 0 + 0 | | 0 | | | , and the second | Section 5 | TOTAL PROPERTY OF THE PARTY. | | nymmetricity of the second | | 4 | B = 3 = 3 | | ٥ | 0 | dia
action | R. | 3 | | | _ 5 | 0 | 10 | 1 = 1 -5×9 | | 0 | O | 23 | 0 | <u>5</u>
3 | 1 | U | 3 | | | (i) = (i) -(i) | | 0 | 0 | $-\frac{2}{3}$ | 0 | (3) | 0 | - 1 | 3 | ¥ | | 0-0-0 | private column : S_1 relation test : ① N/N ③ N/N ④ $\frac{10}{\left(\frac{5}{3}\right)} = 6$ ⑥ $\frac{1}{\left(\frac{1}{3}\right)} = 3$ | (4) | | | | | | 5. | ۹, | 95 | 1 | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------| | A | 9 | 34 | 5 | S y | | A CONTRACTOR OF THE PARTY TH | PHOPOGRAPH NEWS TRANSPORTED | OCTORISM STATES AND STATES OF THE STATES | | (1) = (6) - 1/3 × (1) | | | 5 | 3 | 9 | 0 | 3 | S. | | HANT SANTENANDA MANAGA | parameters (1) | les: | | anne de la constitución co | Standard Standard Standard Standard Standard | warmed and benefit the project passes by April 199 | and the majority of the first and a single | And the second s | 0 | · 1 | 0 | ŧ | 5 | @ = 0 + 3 * 10 | | 0 | 1 | -1 | WINDSHIP WITH THE PARTY | Anna Paris Contract of C | enti eli alconi al farina l'accione della est | period in the sentence of the latest | | The second secon | S. | (1) = (8) + \frac{1}{2} \text{*(1)} | | THE RESIDENCE OF | S. | 0 | 10 | 0 | | AL B | | * | | | | ٥ | | 6 | 3 | 0 | ŧ. | 5 | 0 | -2 | 2 | 1 = 1 - 2 × 1 | | 0 | 2 | | - | | | - | ~ 1 | 3 | 3 | (1) = (1) ×3 | | 0 | 0 | - 2 | 0 | ı | 0 | -7 | | 2 | 1 2 | | A has been minimised, with a, = 42 = 0 | max | | | | | | | | |----------------|-----|----|----|----|--------|---|-----| | P | 54 | 5 | 5, | Sz | 53 | | | | 1 | | ٥ | 0 | 8 | | 5 | (B) | | Specimental St | O | à. | 0 | 0 | an- }: | 5 | 1 | | 0 | (3) | ٥ | 0 | 1 | 5 | 5 | (1) | | 0 | -2 | O | 1 | 0 | -3 | 3 | (3) | pinot column: oc (53 is also possible) ratio test: (1) is the only possible row | P | ∞ _ | 5 | S, | 25 | \$3 | and continued interest and the same | | | |------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|-----|-------------------------------------|-----|---------------| | 1 | D | e s consequenciano del profesione de la consequencia della consequencia de la della della consequencia de la conse | C | 1 | -6 | 25 | (P) | =@ +® | | , and the second | en e |) | Comment and other | ٥ | *** | 5 | 0 | : 3 | | 0 | ¥ | ٥ | ٥ | 6 | (3) | 1 16 | (3) | = 10+6 | | 0 | 2 | ٥ | 1 | 3 | -43 | 4 3 | (3) | : (B + 2 x(B) | ratio test: (B) is the only possible now # Example (Big M): # Big n netbod Maximise $$P' = P - (a_1 + a_2)M$$ = $2C + 2 - (12 - 2x - 35 + 5_1 + 5 - 3 + 5_3)M$ = $(1 + 2M)x + (1 + 4M)y - Ms_1 - Ms_3 - 17M$ | max. | 36 | *** | 5, | 5 2 | S ₃ | Α, | AL | Anna Timode in White Principle And | | |------|--------|----------|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|------------------------------------|-----| | | -(H5H) | - (I+4h) | Н | O | H | 0 | 0 | -nm | 0 | | | | 6 | | | a de la constantina della cons | | 0 | 12 | 2 | | 0 | 2 | 0 | 0 | | O | 0 | 0 | 30 | (3) | | 0 | 6 | * | ~ | • | (| 0 | | 5 | (4) | | - | 0 | 1 | (SMILES) | | | | | | | P' >2 $$\frac{1}{3}$$ $\frac{5}{3}$ $\frac{5}{3}$ $\frac{4}{3}$ $\frac{4}{4}$ $\frac{4}{3}$ $\frac{4}{4}$ $\frac{1}{3}$ $\frac{4}{4}$ $\frac{4}{3}$ $\frac{1}{3}$ | | -1 | Lq. | 5, | 25 | 23 | ۵, | 6.5 | _ | | |--------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|---|---------------------| | P1 | JE. | AND THE PROPERTY OF | A CONTRACTOR OF THE PROPERTY O | | to the second | n | 1+17 | S | 1 = 0+ | | Approximate and a second | | Control of the Contro | | O CONTRACTOR OF THE PROPERTY O | The state of s | O | 1 | 8 | (1) = (1) + 1/4 (2) | | 0 | 6 | 0 | 0 | ı | \$ | 0 | -5 | 2 | | | 0 | - 2 | 0 | ŧ | ٥ | - 3 | - 1 | 3 | 3 | (1) = (3) ×3 | | 0 | | | | | | | | | | than as ser the 2-stage simples method # (iv) Constraints that are equalities Replace with two inequality constraints: ie for x + y = 4: replace with $x + y \le 4$ & $x + y \ge 4$ # **Example** =) solva is: $$s_1=4$$, $s_2=4$ ($s_1=0$, $s_2=0$, $s_3=0$) $P=8$ **Note**: If there is a constraint such as, for example: x + y + z = 100, then this can enable the variable z (for example) to be eliminated from the problem (noting that the constraint $$z \ge 0$$ becomes the constraint $100 - x - y \ge 0$ or $x + y \le 100$). This can enable a 3-variable problem to be tackled by a graphical method (involving a feasible region), rather than having to employ the Simplex method. (v) $$x + y < 4$$ (eg) Use $x + y \le 4$ instead, and reduce x or y slightly, if necessary. (vi) Big M method: to minimise P = x + y Modify to minimising $x + y + Ma_1$ (instead of maximising $$x + y - Ma_1$$ (vii) If x (for example) can be negative, then replace x with x_1-x_2 , where $x_1,x_2\geq 0$ (This allows x to be negative, if necessary.)