TMUA 2023 Paper 2 Solutions (13 pages; 11/9/24)

Q1

$$\frac{1}{\sqrt{x}-6} - \frac{1}{\sqrt{x}+6} = \frac{3}{11}$$

$$\Rightarrow \frac{12}{x-36} = \frac{3}{11} = \frac{12}{44}$$

$$\Rightarrow x - 36 = 44 \& \text{ so } x = 80$$

Answer : H

Q2

Integral =
$$\int_{9}^{16} 4 \, dx = [4x]_{9}^{16} = 4(16 - 9) = 28$$

Answer : F

Q3

Answer : C

Q4

VI is incorrect : 3 is a multiple of 3, but is prime

Answer : G

If R is true, then $\int_0^k \sin 2x \, dx = \left[-\frac{1}{2}\cos 2x\right]_0^k$ $= -\frac{1}{2}(1-1) = 0$; so $R \Rightarrow S$ If S is true, then $\left[-\frac{1}{2}\cos 2x\right]_0^k = 0$, so that $(\cos 2k) - 1 = 0$, and hence 2k is an integer multiple of 2π ; ie R is true **Answer : A**

Q6

 $a^x = x$ is equivalent to $log_a x = x$, so I has the same number of sol'ns as (*)

$$a^x = x \Rightarrow a^{2x} = x^2$$
 , but $a^{2x} = x^2 \Rightarrow a^x = x$ or $a^x = -x$

[so potentially there may be extra sol'ns to II where x < 0]

Consider a = 2, and let $y = 2^{x} + x$. We want to see if there are any (negative) values of x for which y = 0:

When
$$x = -1$$
, $y = -\frac{1}{2} < 0$, and when $x = -\frac{1}{2}$, $y = \frac{1}{\sqrt{2}} - \frac{1}{2}$
$$= \frac{\sqrt{2}-1}{2} > 0$$

So, as $2^x + x$ is a continuous function, the change of sign means That there is a solution to $2^x + x = 0$, and thus to $a^x = -x$. So II has more sol'ns than (*).

Finally, there is a 1-1 correspondence between sol'ns of $a^x = x$ and sol'ns of $a^{2x} = 2x$ (setting y = 2x), so that III has the same number of sol'ns as (*).

Answer: F

Q7

For ax + by = c, a positive gradient means that $-\frac{a}{b} > 0$, or $\frac{a}{b} < 0$,

and a positive y-intercept means that $\frac{c}{h} > 0$

Let (*) be the situation where both the gradient and the yintercept are positive.

Thus, A is equivalent to (*); ie A is a necessary and sufficient condition for (*).

B: $\frac{a}{b} > 0$ is not a necessary condition

C: Let a = -1, b = 2 & c = 3, so that

 $\frac{a}{b} = -\frac{1}{2} < 0$ and $\frac{c}{b} = \frac{3}{2} > 0$, and hence (*) is satisfied

But it is not true that a > b > c, so that this is not a necessary condition for (*).

D: Now let a = -1, b = 3 & c = 2, so that

 $\frac{a}{b} = -\frac{1}{3} < 0$ and $\frac{c}{b} = \frac{2}{3} > 0$, and hence (*) is satisfied

But it is not true that a < b < c, so that this is not a necessary condition for (*).

For E & F: Suppose that b > 0. Then $(*) \Rightarrow \frac{a}{b} < 0 \Rightarrow a < 0$

and $\frac{c}{b} > 0 \Rightarrow c > 0$

If instead b < 0. Then $(*) \Rightarrow \frac{a}{b} < 0 \Rightarrow a > 0$

fmng.uk

and
$$\frac{c}{b} > 0 \Rightarrow c < 0$$

Thus (as $b \neq 0$), a & c must be of opposite sign; ie this is a necessary condition.

So F can be ruled out.

By elimination, we can conclude that E is the correct answer.

[E is not sufficient: consider the case a = 1, b = 1, c = -1, where

```
\frac{a}{b} > 0, so that (*) is not satisfied.]
```

Answer : E

Q8

In the case of an obtuse-angled triangle (as in A), III will always hold. In the case of an acute-angled triangle (as in B), III will again always hold. [The 'altitudes' of an acute-angled triangle always meet at a point (the 'othocentre') inside the triangle.]

Answer : D

Statement (*) is clearly not true (the sum of the angles in a pentagon is $(5 - 2) \times 180 = 540^{\circ}$, and so the other angles need only average 108°). The contrapositive of (*) is mathematically equivalent to (*), and so is also not true. [The contrapositive of $A \Rightarrow B$ is $B' \Rightarrow A'$]

The converse of (*) is: "If the interior angle form an arithmetic sequence, then at least one of them is 108° "

To investigate this, suppose that the smallest angle is α , and that the common difference of the sequence is *d*.

Then
$$5 \times \frac{1}{2}(\alpha + [\alpha + 4d]) = 5(\alpha + 2d) = 540$$
,

so that $\alpha + 2d = 108$, and thus one of the angles is 108° .

So the converse of (*) is true.

Answer : D

Q10

Answer : A

Q11

Writing *A* is the event that $2^k + 1$ is prime, and *B* is the event that *k* is a power of 2:

 $(*) \equiv A \Rightarrow B$ $I \equiv B \Rightarrow A$ (the converse of (*)), and so $I \not\equiv (*)$ $II \equiv A' \Rightarrow B' \equiv B \Rightarrow A [A' \Rightarrow B' \text{ is the contrapositive of}$ $B \Rightarrow A$, and so $II \not\equiv (*)$ $III \equiv A \Rightarrow B$, and so $III \equiv (*)$

Answer : G

Q12

Statement I means that:

"If $sinxcos^2 x = p^2 sinx$ has 3 solutions, then p > 1" Now, $sinxcos^2 x = p^2 sinx \Rightarrow sinx(p^2 - cos^2 x) = 0$ $x = 0, \pi \& 2\pi$ are 3 solutions Suppose now that $p^2 - cos^2 x = 0$. Then $cosx = \pm p$. This gives rise to further solutions, unless p > 1 or p < -1(when $p = \pm 1, x = 0, \pi$ or 2π)

So statement I is not true.

Statement II means that:

"If $sinxcos^2 x = p^2 sinx$ has 7 solutions, then -1 "["Only if" is equivalent to "is sufficient for"] $There will be 7 solutions when <math>p^2 - cos^2 x = 0$ (*) has 4 solutions, other than $x = 0, \pi$ or 2π As before, when $p = \pm 1$, (*) $\Rightarrow x = 0, \pi$ or 2π . When p < -1 or p > 1, (*) has no solutions. And when $-1 , (*), <math>cosx = \pm p$, which gives 4 solutions (not including $x = 0, \pi$ or 2π). So statement II is true.

Answer : C

Q13

[It may be worth starting at C, as the examiners could well be expecting most candidates to start at A, or E!] $C \Rightarrow A, C \Rightarrow B, C \Rightarrow D \& C \Rightarrow E$ so C is the correct answer $[A \Rightarrow B \& A \Rightarrow C, \text{ so } A \text{ is ruled out}]$ $[B \Rightarrow A, B \Rightarrow C, B \Rightarrow D \& B \Rightarrow E, \text{ so } B \text{ is not the answer}]$ $[D \Rightarrow A, D \Rightarrow B, \text{ so } D \text{ is ruled out}]$ $[E \Rightarrow A, E \Rightarrow B, E \Rightarrow C, \text{ so } E \text{ is ruled out}]$

Answer : C

Q14

It is assumed that the wording means "If ANY two of the lines ..."

[Always assume the simplest interpretation.]

Suppose that the 1st two lines are parallel. Then $-\frac{a}{b} = -\frac{b}{c}$ (1)

The gradient of the 3rd is $-\frac{c}{a} = -\frac{b^2}{a}$

If the 3 gradients are the same, then $-\frac{b^2}{a} = -\frac{a}{b}$, so that $b^3 = a^2$.

But (1) can be satisfied without $b^3 = a^2$ holding, so A is not correct.

If the 3rd line is perpendicular to the other two, then

fmng.uk

$$\left(-\frac{c}{a}\right)\left(-\frac{a}{b}\right) = -1; \text{ ie } c = -b$$

Again, (1) can be satisfied without c = -b holding, so B is not correct.

If the 3rd line is parallel to y = x, then $-\frac{c}{a} = 1$, so that c = -a

Once again, (1) can be satisfied without c = -a holding, so C is not correct.

If the 3rd line is perpendicular to y = x, then $-\frac{c}{a} = -1$, so that c = a

And again, (1) can be satisfied without c = a holding, so D is not correct.

Suppose that the 1st two lines are perpendicular. Then $\left(-\frac{a}{b}\right)\left(-\frac{b}{c}\right) = -1$; ie c = -a (2)

[Leave E for the moment, as it is more complicated to investigate.]

As before, if the 3rd line is parallel to y = x, then $-\frac{c}{a} = 1$, so that c = -a, which is consistent with (2), and if c = -a then the 3rd line is parallel to y = x.

[We have to be careful to show that the 3rd line being parallel is a necessary condition, rather than a sufficient condition.]

If instead the 1st and 3rd lines are perpendicular, then $\left(-\frac{a}{b}\right)\left(-\frac{c}{a}\right) = -1$; ie c = -b, and the gradient of the 2nd line is $-\frac{b}{c} = 1$, so that the 2nd line is parallel to y = x.

And if instead the 2nd and 3rd lines are perpendicular, then $\left(-\frac{b}{c}\right)\left(-\frac{c}{a}\right) = -1$; ie b = -a, and the gradient of the 1st line is

 $-\frac{a}{b} = 1$, so that the 1st line is parallel to y = x.

Hence F is correct.

Answer : F

Q15

$$0.00110011 \dots = (2^{-3} + 2^{-4}) + (2^{-7} + 2^{-8}) + (2^{-11} + 2^{-12}) \dots$$
$$= (2^{-3} + 2^{-4})(1 + 2^{-4} + 2^{-8} + \dots)$$
$$= \frac{1}{8} \left(1 + \frac{1}{2}\right) \frac{1}{1 - 2^{-4}} = \frac{3}{16} \cdot \frac{16}{15} = \frac{1}{5}$$

Answer: B

Q16

As 7 is a divisor of $u_1 = a \& u_2 = b$, it is a divisor of $u_3 = u_1 + u_2$, and of $u_4 = u_2 + u_3$ etc; so that 7 is a divisor of u_{2023} ;

ie statement I is true

 $A \Rightarrow B$ is equivalent to $B' \Rightarrow A'$ [consider Venn diagram, where $A \subset B$]

So Statement II is equivalent to:

"If u_1 is a factor of u_n for some n > 1,

then u_1 is a factor of u_2 " (*)

Consider $u_1 = 2, u_2 = 3$; so that $u_3 = 5, u_4 = 8$

Then (*) doesn't hold (and we can also see directly that Statement II isn't true).

For Statement III:

Now the HCF of a & b is 7, so that a = 7m & b = 7n, where the HCF of the positive integers m & n is 1. Then $u_3 = a + b$, $u_4 = (a + b) + b$ and $u_5 = (a + 2b) + (a + b) = 2a + 3b$ [On account of the presence of 3b here:] Consider the case of a = 21 & b = 7. Then $u_5 = 2(21) + 3(7)$ = 21(2 + 1), and as $u_1 \& u_5$ have a HCF of 21, this provides a counterexample to Statement III, which is therefore not true. Thus only Statement I is true.

Answer : B

Q17

Value of integral is area under the 'curve':

$$2^{1} \cdot 1 + 2^{2} \cdot 1 + \dots + 2^{99} \cdot 1$$

= $2 \cdot \frac{2^{99} - 1}{2 - 1} = 2^{100} - 2$

Answer: F

Q18

If $b^2 > 4c$, then the equation $y^2 + by + c = 0$ (*) has the distinct roots $y = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$

Then, in order for the equation $x^4 + bx^2 + c = 0$ to have 4 distinct roots, both of the roots of (*) must be positive, so that

$$-b - \sqrt{b^2 - 4c} > 0$$
; ie $\sqrt{b^2 - 4c} < -b$,

which requires b < 0 and c > 0

Thus, sufficient and necessary conditions for 4 distinct roots are:

$$b^2 > 4c, b < 0 \text{ and } c > 0$$
,

or equivalently $c > 0, b < -2\sqrt{c}$

Answer : D

Q19

Consider $f(x) = x^2 + x - 1$, so that f(x) = 0 has 2 distinct roots. Then $g(x) = x(2x + 1) = 2x^2 + x$, so that g(x) = 0 has 2 distinct roots; ie M = N

Thus Statement II is true.

Instead, let $f(x) = x^2 + x + 1$, so that f(x) = 0 has no roots.

Then $g(x) = x(2x + 1) = 2x^2 + x$ again, so that g(x) = 0 has 2

distinct roots; ie M < N

Thus Statement I is true.

[If f(x) is a quadratic, then we can see from the above that g(x) = 0 will always have 2 distinct roots; thus M > N isn't possible in this situation.]

Considering the graph of y = f(x), we see that, for there to be M roots, there must be at least M - 1 turning points. [Consider a cubic, for example.] But one of these turning points could occur when x = 0. For example, if $f(x) = x^2(x - 1) + a$, where a > 0 is sufficiently small for the graph of y = f(x) to cross the x-axis 3

times.

Then
$$g(x) = x[2x(x-1) + x^2] = x^2(3x-2)$$
. So $M = 3$
and $N = 2$

Thus Statement III is also true.

Answer : H

Q20

"Only if" is equivalent to "implies".

Let $f(x) = x^2$. Then f(|x|) = f(x) for all x, and so the integrand of $I_{p,q}$ is zero for all x (and hence $I_{p,q} = 0$), regardless of the value of p. Thus $I_{p,q} = 0 \Rightarrow 0 < p$, and so Statement I is not true. [It looks as if it would be difficult to prove the truth of Statement II, so it may be best to look for a counterexample first.] Consider f(x) = -x (so that f'(x) < 0 for all x). Then the integrand of $I_{p,q}$ is $(-x)^2 - (-|x|)^2 = 0$ for all x, and hence $I_{p,q} = 0$. Thus Statement II is not true. [If we were short of time, this would be a good one to guess!] Re. Statement III, if $p \ge 0$, then f(|x|) = f(x), and so the integrand of $I_{p,q}$ is zero, and therefore $I_{p,q} = 0$. Thus if $I_{p,q} > 0$, it

follows that p < 0.

Thus Statement III is true.

[Alternatively, we can say that Statement III $(I_{p,q} > 0 \Rightarrow p < 0)$ is equivalent to "not $(p < 0) \Rightarrow not(I_{p,q} > 0)$ ", or

 $p\geq 0 \Rightarrow I_{p,q}\leq 0\;(^*)$

We have shown that $p \ge 0 \Rightarrow I_{p,q} = 0$, which means that (*) is true.]

Answer : D