TMUA 2023 Paper 2 Solutions (13 pages; 11/9/24)

Q1

$$
\frac{1}{\sqrt{x-6}} - \frac{1}{\sqrt{x+6}} = \frac{3}{11}
$$

$$
\Rightarrow \frac{12}{x-36} = \frac{3}{11} = \frac{12}{44}
$$

$$
\Rightarrow x - 36 = 44 \& \text{ so } x = 80
$$

Answer : H

Q2

Integral =
$$
\int_9^{16} 4 \, dx = [4x] \frac{16}{9} = 4(16 - 9) = 28
$$

Answer : F

Q3

Answer : C

Q4

VI is incorrect : 3 is a multiple of 3, but is prime

Answer : G

If R is true, then $\int_0^k sin2x \ dx = \left[-\frac{1}{2}\right]$ $rac{1}{2}cos 2x$] \boldsymbol{k} 0 \boldsymbol{k} 0 $=-\frac{1}{2}$ $\frac{1}{2}(1-1) = 0$; so $R \Rightarrow S$ If S is true, then $\left[-\frac{1}{2}\right]$ $\frac{1}{2}$ cos2x] \boldsymbol{k} 0 $= 0,$ so that $(cos2k) - 1 = 0$, and hence 2k is an integer multiple of 2π ; ie R is true

Answer : A

Q6

 $a^x = x$ is equivalent to $log_a x = x$, so I has the same number of sol'ns as (*)

$$
a^x = x \Rightarrow a^{2x} = x^2
$$
, but $a^{2x} = x^2 \Rightarrow a^x = x$ or $a^x = -x$

[so potentially there may be extra sol'ns to II where $x < 0$] Consider $a = 2$, and let $y = 2^x + x$. We want to see if there are any (negative) values of x for which $y = 0$:

When
$$
x = -1
$$
, $y = -\frac{1}{2} < 0$, and when $x = -\frac{1}{2}$, $y = \frac{1}{\sqrt{2}} - \frac{1}{2}$
= $\frac{\sqrt{2}-1}{2} > 0$

So, as $2^x + x$ is a continuous function, the change of sign means That there is a solution to $2^x + x = 0$, and thus to $a^x = -x$. So II has more sol'ns than (*).

Finally, there is a 1-1 correspondence between sol'ns of $a^x = x$ and sol'ns of $a^{2x} = 2x$ (setting $y = 2x$), so that III has the same number of sol'ns as (*).

Answer : F

Q7

For $ax + by = c$, a positive gradient means that $-\frac{a}{b}$ $\frac{a}{b}$ > 0, or $\frac{a}{b}$ $\frac{a}{b} < 0$,

and a positive y-intercept means that $\frac{c}{b} > 0$

Let $(*)$ be the situation where both the gradient and the yintercept are positive.

Thus, A is equivalent to $(*)$; ie A is a necessary and sufficient condition for (*).

B: $\frac{a}{b} > 0$ is not a necessary condition

C: Let $a = -1$, $b = 2$ & $c = 3$, so that

 α $\frac{a}{b} = -\frac{1}{2}$ $\frac{1}{2}$ < 0 and $\frac{c}{b} = \frac{3}{2}$ $\frac{3}{2}$ > 0, and hence (*) is satisfied

But it is not true that $a > b > c$, so that this is not a necessary condition for (*).

D: Now let $a = -1$, $b = 3$ & $c = 2$, so that

 α $\frac{a}{b} = -\frac{1}{3}$ $\frac{1}{3}$ < 0 and $\frac{c}{b} = \frac{2}{3}$ $\frac{2}{3}$ > 0, and hence (*) is satisfied

But it is not true that $a < b < c$, so that this is not a necessary condition for (*).

For E & F: Suppose that $b > 0$. Then $(*) \Rightarrow \frac{a}{b}$ $\frac{a}{b}$ < 0 $\Rightarrow a$ < 0

and $\frac{c}{b} > 0 \Rightarrow c > 0$

If instead $b < 0$. Then $(*) \Rightarrow \frac{a}{b}$ $\frac{a}{b}$ < 0 \Rightarrow a > 0

and
$$
\frac{c}{b} > 0 \Rightarrow c < 0
$$

Thus (as $b \neq 0$), $a \& c$ must be of opposite sign; ie this is a necessary condition.

So F can be ruled out.

By elimination, we can conclude that E is the correct answer.

[E is not sufficient: consider the case $a = 1$, $b = 1$, $c = -1$, where

```
\alpha\frac{a}{b} > 0, so that (*) is not satisfied.]
```
Answer : E

Q8

In the case of an obtuse-angled triangle (as in A), III will always hold. In the case of an acute-angled triangle (as in B), III will again always hold. [The 'altitudes' of an acute-angled triangle always meet at a point (the 'othocentre') inside the triangle.]

Answer : D

Statement (*) is clearly not true (the sum of the angles in a pentagon is $(5 – 2) \times 180 = 540^{\circ}$, and so the other angles need only average 108°). The contrapositive of (*) is mathematically equivalent to (*), and so is also not true. [The contrapositive of $A \Rightarrow B$ is $B' \Rightarrow A'$]

The converse of (*) is: "If the interior angle form an arithmetic sequence, then at least one of them is 108°"

To investigate this, suppose that the smallest angle is α , and that the common difference of the sequence is d .

Then
$$
5 \times \frac{1}{2} (\alpha + [\alpha + 4d]) = 5(\alpha + 2d) = 540
$$
,

so that $\alpha + 2d = 108$, and thus one of the angles is 108°.

So the converse of $(*)$ is true.

Answer : D

Q10

Answer : A

Q11

Writing A is the event that $2^k + 1$ is prime, and B is the event that k is a power of 2:

 $(*) \equiv A \Rightarrow B$ $I \equiv B \Rightarrow A$ (the converse of (*)), and so $I \not\equiv$ (*) $II \equiv A' \Rightarrow B' \equiv B \Rightarrow A [A' \Rightarrow B' \text{ is the contrapositive of}]$ $B \Rightarrow A$, and so $II \not\equiv (*)$

 $III \equiv A \Rightarrow B$, and so $III \equiv (*)$

Answer : G

Q12

Statement I means that:

"If $sinxcos^2 x = p^2 sinx$ has 3 solutions, then $p > 1$ " Now, $sinxcos^2 x = p^2 sinx \Rightarrow sinx(p^2 - cos^2 x) = 0$ $x = 0, \pi \& 2\pi$ are 3 solutions Suppose now that $p^2 - cos^2 x = 0$. Then $cos x = \pm p$. This gives rise to further solutions, unless $p > 1$ or $p < -1$ (when $p = \pm 1$, $x = 0$, π or 2π)

So statement I is not true.

Statement II means that:

"If $sinxcos^2 x = p^2 sinx$ has 7 solutions, then $-1 < p < 1$ " ["Only if" is equivalent to "is sufficient for"] There will be 7 solutions when $p^2 - cos^2 x = 0$ (*) has 4 solutions, other than $x = 0$, π or 2π As before, when $p = \pm 1$, $(*) \Rightarrow x = 0$, π or 2π . When $p < -1$ or $p > 1$, (*) has no solutions. And when $-1 < p < 1$, $(*)$, $cos x = \pm p$, which gives 4 solutions (not including $x = 0, \pi$ or 2π). So statement II is true.

Answer : C

Q13

[It may be worth starting at C, as the examiners could well be expecting most candidates to start at A, or E!] $C \Rightarrow A, C \Rightarrow B, C \Rightarrow D \& C \Rightarrow E$ so C is the correct answer $[A \nRightarrow B \& A \nRightarrow C$, so A is ruled out] $[B \Rightarrow A, B \Rightarrow C, B \Rightarrow D \& B \Rightarrow E$, so B is not the answer $[D \nRightarrow A, D \nRightarrow B$, so D is ruled out] $[E \Rightarrow A, E \not\Rightarrow B, E \not\Rightarrow C$, so E is ruled out]

Answer : C

Q14

It is assumed that the wording means "If ANY two of the lines …"

[Always assume the simplest interpretation.]

Suppose that the 1st two lines are parallel. Then $-\frac{a}{b}$ $\frac{a}{b} = -\frac{b}{c}$ $\frac{b}{c}(1)$

The gradient of the 3rd is $-\frac{c}{a}$ $\frac{c}{a} = -\frac{b^2}{a}$ \boldsymbol{a}

If the 3 gradients are the same, then $-\frac{b^2}{a}$ $\frac{b^2}{a} = -\frac{a}{b}$ $\frac{a}{b}$, so that $b^3 = a^2$.

But (1) can be satisfied without $b^3 = a^2$ holding, so A is not correct.

If the 3rd line is perpendicular to the other two, then

fmng.uk

$$
\left(-\frac{c}{a}\right)\left(-\frac{a}{b}\right) = -1; \text{ ie } c = -b
$$

Again, (1) can be satisfied without $c = -b$ holding, so B is not correct.

If the 3rd line is parallel to $y = x$, then $-\frac{c}{a}$ $\frac{c}{a} = 1$, so that $c = -a$

Once again, (1) can be satisfied without $c = -a$ holding, so C is not correct.

If the 3rd line is perpendicular to $y = x$, then $-\frac{c}{a}$ $\frac{c}{a} = -1$, so that $c = a$

And again, (1) can be satisfied without $c = a$ holding, so D is not correct.

Suppose that the 1st two lines are perpendicular. Then $\left(-\frac{a}{b}\right)$ $\binom{a}{b}$ $\left(-\frac{b}{c}\right)$ $\left(\frac{b}{c}\right) = -1$; ie $c = -a$ (2)

[Leave E for the moment, as it is more complicated to investigate.]

As before, if the 3rd line is parallel to $y = x$, then $-\frac{c}{a}$ $\frac{c}{a} = 1$, so that $c = -a$, which is consistent with (2), and if $c = -a$ then the 3rd line is parallel to $y = x$.

[We have to be careful to show that the 3rd line being parallel is a necessary condition, rather than a sufficient condition.]

If instead the 1st and 3rd lines are perpendicular, then $\left(-\frac{a}{b}\right)$ $\binom{a}{b}$ $\left(-\frac{c}{a}\right)$ $\left(\frac{c}{a}\right) = -1$; ie $c = -b$, and the gradient of the 2nd line is $-\frac{b}{a}$ $\frac{b}{c}$ = 1, so that the 2nd line is parallel to $y = x$.

And if instead the 2nd and 3rd lines are perpendicular, then $\left(-\frac{b}{a}\right)$ $\left(\frac{b}{c}\right)\left(-\frac{c}{a}\right)$ $\left(\frac{c}{a}\right) = -1$; ie $b = -a$, and the gradient of the 1st line is $-\frac{a}{b}$ $\frac{a}{b}$ = 1, so that the 1st line is parallel to $y = x$.

Hence F is correct.

Answer : F

Q15

$$
0.00110011 ... = (2^{-3} + 2^{-4}) + (2^{-7} + 2^{-8}) + (2^{-11} + 2^{-12}) ...
$$

= $(2^{-3} + 2^{-4})(1 + 2^{-4} + 2^{-8} + ...)$
= $\frac{1}{8}(1 + \frac{1}{2}) \frac{1}{1 - 2^{-4}} = \frac{3}{16} \cdot \frac{16}{15} = \frac{1}{5}$

Answer : B

Q16

As 7 is a divisor of $u_1 = a \& u_2 = b$, it is a divisor of $u_3 = u_1 + u_2$, and of $u_4 = u_2 + u_3$ etc; so that 7 is a divisor of u_{2023} ;

ie statement I is true

 $A \Rightarrow B$ is equivalent to $B' \Rightarrow A'$ [consider Venn diagram, where $A \subset B$]

So Statement II is equivalent to:

"If u_1 is a factor of u_n for some $n > 1$,

then u_1 is a factor of u_2 " (*)

Consider $u_1 = 2, u_2 = 3$; so that $u_3 = 5, u_4 = 8$

Then (*) doesn't hold (and we can also see directly that Statement II isn't true).

For Statement III:

Now the HCF of $a \& b$ is 7, so that $a = 7m \& b = 7n$, where the HCF of the positive integers $m \& n$ is 1. Then $u_3 = a + b$, $u_4 = (a + b) + b$ and $u_5 = (a + 2b) + (a + b) = 2a + 3b$ [On account of the presence of $3b$ here:] Consider the case of $a = 21$ & $b = 7$. Then $u_5 = 2(21) + 3(7)$ $= 21(2 + 1)$, and as $u_1 \& u_5$ have a HCF of 21, this provides a counterexample to Statement III, which is therefore not true. Thus only Statement I is true.

Answer : B

Q17

Value of integral is area under the 'curve':

$$
21 \cdot 1 + 22 \cdot 1 + \dots + 299 \cdot 1
$$

$$
= 2 \cdot \frac{299 - 1}{2 - 1} = 2100 - 2
$$

Answer : F

Q18

If $b^2 > 4c$, then the equation $y^2 + by + c = 0$ (*) has the distinct roots $y = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$ 2

Then, in order for the equation $x^4 + bx^2 + c = 0$ to have 4 distinct roots, both of the roots of (*) must be positive, so that

$$
-b - \sqrt{b^2 - 4c} > 0
$$
; ie $\sqrt{b^2 - 4c} < -b$,

which requires $b < 0$ and $c > 0$

Thus, sufficient and necessary conditions for 4 distinct roots are:

$$
b^2 > 4c, b < 0
$$
 and $c > 0$,

or equivalently $c > 0$, $b < -2\sqrt{c}$

Answer : D

Q19

Consider $f(x) = x^2 + x - 1$, so that $f(x) = 0$ has 2 distinct roots. Then $g(x) = x(2x + 1) = 2x^2 + x$, so that $g(x) = 0$ has 2 distinct roots; ie $M = N$

Thus Statement II is true.

Instead, let $f(x) = x^2 + x + 1$, so that $f(x) = 0$ has no roots.

Then $g(x) = x(2x + 1) = 2x^2 + x$ again, so that $g(x) = 0$ has 2

distinct roots; ie $M < N$

Thus Statement I is true.

[If $f(x)$ is a quadratic, then we can see from the above that $q(x) = 0$ will always have 2 distinct roots; thus $M > N$ isn't possible in this situation.]

Considering the graph of $y = f(x)$, we see that, for there to be M roots, there must be at least $M-1$ turning points. [Consider a cubic, for example.] But one of these turning points could occur when $x = 0$. For example, if $f(x) = x^2(x - 1) + a$, where $a > 0$ is sufficiently small for the graph of $y = f(x)$ to cross the *x*-axis 3

times.

Then
$$
g(x) = x[2x(x-1) + x^2] = x^2(3x - 2)
$$
. So $M = 3$
and $N = 2$

Thus Statement III is also true.

Answer : H

Q20

"Only if" is equivalent to "implies".

Let $f(x) = x^2$. Then $f(|x|) = f(x)$ for all x, and so the integrand of $I_{p,q}$ is zero for all x (and hence $I_{p,q} = 0$), regardless of the value of p. Thus $I_{p,q} = 0 \neq 0 < p$, and so Statement I is not true. [It looks as if it would be difficult to prove the truth of Statement II, so it may be best to look for a counterexample first.] Consider $f(x) = -x$ (so that $f'(x) < 0$ for all x). Then the integrand of $I_{p,q}$ is $(-x)^2 - (-|x|)^2 = 0$ for all x, and hence $I_{p,q} = 0$. Thus Statement II is not true. [If we were short of time, this would be a good one to guess!] Re. Statement III, if $p \ge 0$, then $f(|x|) = f(x)$, and so the integrand of $I_{p,q}$ is zero, and therefore $I_{p,q} = 0$. Thus if $I_{p,q} > 0$, it follows that $p < 0$.

Thus Statement III is true.

[Alternatively, we can say that Statement III ($l_{p,q} > 0 \Rightarrow p < 0$) is equivalent to "*not* $(p < 0) \Rightarrow not(I_{p,q} > 0)$ ", or

 $p \geq 0 \Rightarrow I_{p,q} \leq 0$ (*)

We have shown that $p \ge 0 \Rightarrow I_{p,q} = 0$, which means that (*) is true.]

Answer : D