Vectors Q26 (3/5/24)

Write the following Cartesian equations of planes in parametric form:

(i) x + y + z = 1 (ii) x + y = 1 (iii) x = 1

Solution

(i) For this case, we can set $x = \lambda$ and $y = \mu$, if a parametric form of this type is possible:

$$\underline{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ a \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ b \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ c \end{pmatrix} \quad (*)$$

This means that *a* will be 1.

Then $\begin{pmatrix} 1 \\ 0 \\ b \end{pmatrix} \& \begin{pmatrix} 0 \\ 1 \\ c \end{pmatrix}$ will be valid direction vectors in the plane,

provided that they are perpendicular to the normal to the

plane; ie that there are solutions to $\begin{pmatrix} 1 \\ 0 \\ b \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$\begin{pmatrix} 0\\1\\c \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\1 \end{pmatrix} = 0 \text{ ; so } b = c = -1$$

Thus a possible parametric form is

$$\underline{r} = \begin{pmatrix} 0\\0\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + \mu \begin{pmatrix} 0\\1\\-1 \end{pmatrix}$$

[Alternatively, $x + y + z = 1 \Rightarrow \lambda + \mu + z = 1$,

so that $z = 1 - \lambda - \mu$, and so a = 1, b = -1 & c = -1]

(ii) In this case,
$$\underline{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ a \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ b \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ c \end{pmatrix}$$

isn't possible, as x = y = 0 doesn't satisfy x + y = 1Instead, we can try $x = \lambda$ and $z = \mu$, so that $y = 1 - \lambda$

fmng.uk

This gives
$$\underline{r} = \begin{pmatrix} 0\\1\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\0 \end{pmatrix} + \mu \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
,
and, as a check, $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ satisfies $x + y = 1$,
and $\begin{pmatrix} 1\\-1\\0 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\0 \end{pmatrix} = 0 \& \begin{pmatrix} 0\\0\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\0 \end{pmatrix} = 0$

(iii) Here, we can obviously set x = 1, $y = \lambda$, $z = \mu$ Thus a possible parametric form is

$$\underline{r} = \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \lambda \begin{pmatrix} 0\\1\\0 \end{pmatrix} + \mu \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$