Vectors Q26 (3/5/24)
Write the following Cartesian equations of planes in parametric form:
(i) $x+y+z=1$ (ii) $x+y=1$ (iii) $x=1$

Solution

(i) For this case, we can set $x=\lambda$ and $y=\mu$, if a parametric form of this type is possible:
$\underline{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ a\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 0 \\ b\end{array}\right)+\mu\left(\begin{array}{l}0 \\ 1 \\ c\end{array}\right)$
This means that a will be 1 .
Then $\left(\begin{array}{l}1 \\ 0 \\ b\end{array}\right) \&\left(\begin{array}{l}0 \\ 1 \\ c\end{array}\right)$ will be valid direction vectors in the plane, provided that they are perpendicular to the normal to the plane; ie that there are solutions to $\left(\begin{array}{l}1 \\ 0 \\ b\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=0$ and $\left(\begin{array}{l}0 \\ 1 \\ c\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=0$; so $b=c=-1$

Thus a possible parametric form is
$\underline{r}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)+\mu\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$
[Alternatively, $x+y+z=1 \Rightarrow \lambda+\mu+z=1$,
so that $z=1-\lambda-\mu$, and so $a=1, b=-1 \& c=-1]$
(ii) In this case, $\underline{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ a\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 0 \\ b\end{array}\right)+\mu\left(\begin{array}{l}0 \\ 1 \\ c\end{array}\right)$
isn't possible, as $x=y=0$ doesn't satisfy $x+y=1$ Instead, we can try $x=\lambda$ and $z=\mu$, so that $y=1-\lambda$

This gives $\underline{r}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)+\mu\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$,
and, as a check, $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ satisfies $x+y=1$,
and $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)=0 \&\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)=0$
(iii) Here, we can obviously set $x=1, y=\lambda, z=\mu$

Thus a possible parametric form is
$\underline{r}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+\mu\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

